Inverse Problems for Philosophers Bridging the gap between agent-based models and behavioral data

> Lucas Gautheron lucasgautheron.github.io

Interdisciplinary Center for Science and Technology Studies, Wuppertal

École Normale Supérieure, Paris

University of Bochum, January 2025

Inverse problems for philosophers and agent-based modelers

2 A case-study of conventions: the metric signature in particle physics

- How do physicists choose which convention to use in their own papers?
- How do scientists resolve conflicting preferences in collaborations?
- How do physicists' preferences get formed?

Reasons are:

• **Intellectual**: assess whether models capture what is actually going on in situations of interest / use data as a source of inspiration

Reasons are:

- **Intellectual**: assess whether models capture what is actually going on in situations of interest / use data as a source of inspiration
- Methodological: Non-empirical validation is fallible. Example: "robustness" (insensitivity to model assumptions/parameters) ⇒ what if the outcome really is contingent on certain circumstances (the values of underlying parameters, the topology of some relevant network, etc.)

Reasons are:

- **Intellectual**: assess whether models capture what is actually going on in situations of interest / use data as a source of inspiration
- Methodological: Non-empirical validation is fallible. Example: "robustness" (insensitivity to model assumptions/parameters) ⇒ what if the outcome really is contingent on certain circumstances (the values of underlying parameters, the topology of some relevant network, etc.)
- **Practical**: normative insights from models without connection to data may not be translatable into interventions/policies (abstract parameters in a computational model do not immediately connect to actionable parameters!)

Inverse problems for philosophers and agent-based modelers

A case-study of conventions: the metric signature in particle physics
How do physicists choose which convention to use in their own papers?
How do scientists resolve conflicting preferences in collaborations?

• How do physicists' preferences get formed?

 Inverse problems seek to infer the invisible causes underlying a set of observations.

5/41

- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:

Rules governing agents' behavior

"Forward problem"

Outcome of agents' behavior

- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:

	"Forward problem"		
Rules governing		\rightarrow	Outcome of
agents' behavior	,		agents' behavior
ugents benution	"Inverse problem"		ugents benution

- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:

		"Forward problem"		
Rules governing			\rightarrow	Outcome of
agents' behavior	,			agents' behavior
agento benavior	·	"Inverse problem"		

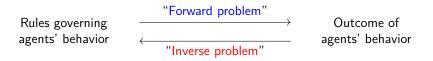
• Inverse problems are hard:

- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:

		"Forward problem"		
Rules governing			\rightarrow	Outcome of
agents' behavior	,			agents' behavior
ugento senario	`	"Inverse problem"		ugento benution

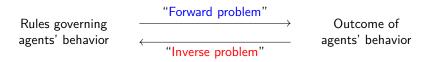
- Inverse problems are hard:
 - Identifiability problems (underdetermination): many causes could have produced a given outcome

- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:



- Inverse problems are hard:
 - Identifiability problems (underdetermination): many causes could have produced a given outcome
 - Misspecification problems: inverse problems may produce misleading results when modeling assumptions are "too wrong".

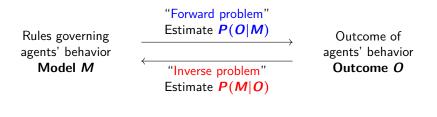
- Inverse problems seek to infer the invisible causes underlying a set of observations.
- In the context of Agent-Based Modeling:



- Inverse problems are hard:
 - Identifiability problems (underdetermination): many causes could have produced a given outcome
 - Misspecification problems: inverse problems may produce misleading results when modeling assumptions are "too wrong".
 - Computational problems: solving inverse problems often involves intractable computations and requires approximation schemes.

Bayesian inference for inverse problems

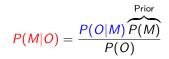
- Both forward models and inverse problems have a stochastic/probabilistic component (random initialization, partially random decisions; uncertainty quantification...)
- We appeal to probabilities and Bayesian inference.



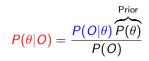
$$P(M|O) = \frac{P(O|M) \stackrel{\text{Prior}}{\overbrace{P(O)}}}{P(O)}$$

(1)

Model comparison and parameter estimation



(2)

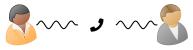


(2)

Inverse problems for philosophers and agent-based modelers

A case-study of conventions: the metric signature in particle physics

- How do physicists choose which convention to use in their own papers?
- How do scientists resolve conflicting preferences in collaborations?
- How do physicists' preferences get formed?



	Bob calls back	Bob awaits
Alice calls back	0,0	1,1
Alice awaits	1,1	0,0

	Bob	Bob	
	calls back	awaits	
Alice calls back	0,0	1,1	
Alice awaits	1,1	0,0	

• **"Conventions"** are cultural tools for solving coordination problems by providing individuals with expectations about how others will behave. These expectations suggest particular courses of action.

	Bob calls back	Bob awaits
Alice calls back	0,0	1,1
Alice awaits	1,1	0,0

- **"Conventions"** are cultural tools for solving coordination problems by providing individuals with expectations about how others will behave. These expectations suggest particular courses of action.
 - Example: left-hand or right-hand traffic.

	Bob calls back	Bob awaits
Alice calls back	0,0	1,1
Alice awaits	1,1	0,0

- **"Conventions"** are cultural tools for solving coordination problems by providing individuals with expectations about how others will behave. These expectations suggest particular courses of action.
 - Example: left-hand or right-hand traffic.
 - Language! "The syllable 'big' could have meant 'small' for all we care, and the red light could have meant 'go"' (Quine, foreword to Lewis 1969)

• Generally based on Lewis: conventions as solutions to coordination games (Lewis, 1969)

- Generally based on Lewis: conventions as solutions to coordination games (Lewis, 1969)
 - Can conventions emerge spontaneously from dyadic interactions alone? (Centola and Baronchelli, 2015; Hawkins, Goodman, and Goldstone, 2019)

- Generally based on Lewis: conventions as solutions to coordination games (Lewis, 1969)
 - Can conventions emerge spontaneously from dyadic interactions alone? (Centola and Baronchelli, 2015; Hawkins, Goodman, and Goldstone, 2019)
 - How does the topology of social networks influence the propagation of conventions via dyadic interactions? (Pujol et al., 2005; Delgado, 2002)

- Generally based on Lewis: conventions as solutions to coordination games (Lewis, 1969)
 - Can conventions emerge spontaneously from dyadic interactions alone? (Centola and Baronchelli, 2015; Hawkins, Goodman, and Goldstone, 2019)
 - How does the topology of social networks influence the propagation of conventions via dyadic interactions? (Pujol et al., 2005; Delgado, 2002)
 - How to measure the degree of conventionality of a convention? (O'Connor, 2020)

- Generally based on Lewis: conventions as solutions to coordination games (Lewis, 1969)
 - Can conventions emerge spontaneously from dyadic interactions alone? (Centola and Baronchelli, 2015; Hawkins, Goodman, and Goldstone, 2019)
 - How does the topology of social networks influence the propagation of conventions via dyadic interactions? (Pujol et al., 2005; Delgado, 2002)
 - How to measure the degree of conventionality of a convention? (O'Connor, 2020)

Most often: idealized formal models or controlled experiments. Few studies in naturalistic settings!

• Relativistic theories: unified description of spacetime.

- Relativistic theories: unified description of spacetime.
- The metric tensor (g_{μν}) captures the metric properties of spacetime; e.g. the pseudo- distance between events (t₁, x₁, y₁, z₁) and (t₂, x₂, y₂, z₂). Two possible descriptions (metric signatures):

- Relativistic theories: unified description of spacetime.
- The metric tensor $(g_{\mu\nu})$ captures the metric properties of spacetime; e.g. the pseudo- distance between events (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2) . Two possible descriptions (metric signatures):

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \end{pmatrix}?$$

- Relativistic theories: unified description of spacetime.
- The metric tensor $(g_{\mu\nu})$ captures the metric properties of spacetime; e.g. the pseudo- distance between events (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2) . Two possible descriptions (metric signatures):

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \end{pmatrix}?$$

"mostly minus" (-1) or "mostly plus"
$$(+1)$$
 (3)

- Relativistic theories: unified description of spacetime.
- The metric tensor $(g_{\mu\nu})$ captures the metric properties of spacetime; e.g. the pseudo- distance between events (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2) . Two possible descriptions (metric signatures):

$$\begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \end{pmatrix}?$$

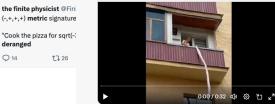
"mostly minus" (-1) or "mostly plus"
$$(+1)$$
 (3)

• Both choices are legitimate, as long as one remains consistent.

.1/41

deranged Q 14

🝓 Enez Özen 😋 @Enezator · 10 août 2023 Every pleasure in life has a price



Q 4 t] 4 ♡ 32 ili 3 k 口土

24/01/2025

12/41

Cliff Burgess 🤣 @CburgesCliff · 10 août 2023 When her family finds you use the wrong metric...

🝓 Enez Özen 😋 @Enezator · 10 août 2023 Every pleasure in life has a price

the finite physicist @Fini (-,+,+,+) metric signature

"Cook the pizza for sqrt(-: deranged

Kinney 🤣 @WKCosmo · 12 oct. 2022 Be sure to check your kids' candy this year. Just found this metric inside a

Snickers bar.

L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

24/01/2025

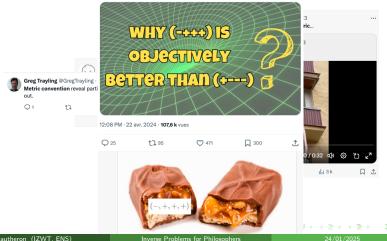
3

12/41

A heated debate

Superconformal Hassaan @Hassaan PHY

This is a small post to argue that (-+++) metric is objectively better than the (+ - - -) metric. Before starting, let me mention that I studied QFT in the (+ - - -) metric (from Peskin and Schroeder). 1/17 **#Physics #scicomm** Traduire le post



• Let's use inverse problems to infer:

13/41

- Let's use inverse problems to infer:
 - I How do scientists decide which convention to use in a paper?

- Let's use inverse problems to infer:
 - I How do scientists decide which convention to use in a paper?
 - O How do they resolve conflicting preferences in collaborations?

- Let's use inverse problems to infer:
 - I How do scientists decide which convention to use in a paper?
 - O How do they resolve conflicting preferences in collaborations?
 - What factors shape scientists' preferences?

- Data collected from **Inspire HEP** (authorship/citation metadata) and **arXiv** (LaTeX source)
- Categories: hep-th (high-energy physics theory), hep-ph (phenomenology), gr-qc (gravitation and cosmology), astro-ph (astrophysics)
- 22 500 papers classified according to their metric signature (mostly plus or mostly minus) using regular expressions.

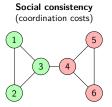
Inverse problems for philosophers and agent-based modelers

A case-study of conventions: the metric signature in particle physics

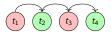
- How do physicists choose which convention to use in their own papers?
- How do scientists resolve conflicting preferences in collaborations?
- How do physicists' preferences get formed?

How do physicists choose which convention to use in their own papers?

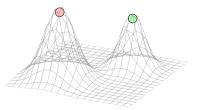
Individuals' attitude towards a convention may be shaped by:



Individual consistency (switching costs)

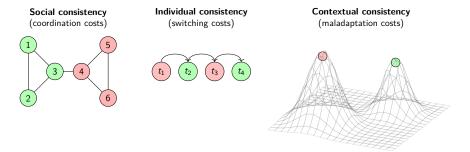


Contextual consistency (maladaptation costs)



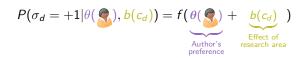
How do physicists choose which convention to use in their own papers?

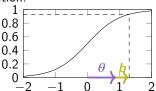
Individuals' attitude towards a convention may be shaped by:

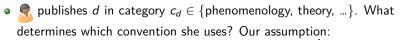


 \Rightarrow Are these involved in the context of the metric signature?

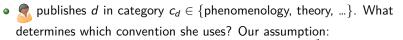
• sublishes *d* in category $c_d \in \{\text{phenomenology, theory, ...}\}$. What determines which convention she uses? Our assumption:



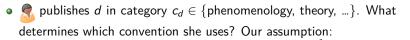




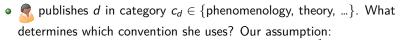
 θ(i) = ±μ is a latent (unobserved) parameter measuring the preference of each author i. θ(i) > 0 indicates a preference for the mostly plus signature



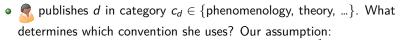
- θ(i) = ±μ is a latent (unobserved) parameter measuring the preference of each author i. θ(i) > 0 indicates a preference for the mostly plus signature
- b_c is the unobserved bias associated with research area c



- θ(i) = ±μ is a latent (unobserved) parameter measuring the preference of each author i. θ(i) > 0 indicates a preference for the mostly plus signature
- b_c is the unobserved bias associated with research area c
- If $|\theta| \gg |b|,$ individual preferences dominate the need to adapt to a given research area



- θ(i) = ±μ is a latent (unobserved) parameter measuring the preference of each author i. θ(i) > 0 indicates a preference for the mostly plus signature
- b_c is the unobserved bias associated with research area c
- If $|\theta| \gg |b|,$ individual preferences dominate the need to adapt to a given research area
- "Item-response model": recover invisible traits/factors that may account for observed behaviors.



- θ(i) = ±μ is a latent (unobserved) parameter measuring the preference of each author i. θ(i) > 0 indicates a preference for the mostly plus signature
- b_c is the unobserved bias associated with research area c
- If $|\theta| \gg |b|,$ individual preferences dominate the need to adapt to a given research area
- "Item-response model": recover invisible traits/factors that may account for observed behaviors.
- Given physicists' choices in their solo-authored papers, we can infer back θ and b using Bayesian inference.

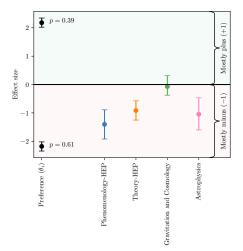


Figure: Individual consistency (preferences) matter the most, but adaptation to the context also occurs.

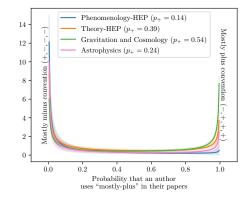


Figure: Physicists tend to always be using the same convention

Inverse problems for philosophers and agent-based modelers

A case-study of conventions: the metric signature in particle physics
How do physicists choose which convention to use in their own papers?
How do scientists resolve conflicting preferences in collaborations?

• How do physicists' preferences get formed?

Inferring preference-aggregation mechanisms in conflicts

How scientists resolve conflicting preferences in collaborations?

21/41

• Focusing on co-authored papers for which:

- Focusing on co-authored papers for which:
 - (i) The metric signature $\mathcal{S}_d \in \{-1,+1\}$ of the paper is observed

- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication

- Focusing on co-authored papers for which:
 - (i) The metric signature $\mathcal{S}_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :

- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :
 - Dictatorial strategies (the first author, the last author, or another author decides)

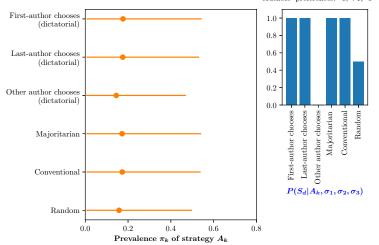
- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :
 - Dictatorial strategies (the first author, the last author, or another author decides)
 - Majoritarian strategy (the majority preference prevails)

- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :
 - Dictatorial strategies (the first author, the last author, or another author decides)
 - Majoritarian strategy (the majority preference prevails)
 - Conventional strategy (the signature most common in the target research area prevails)

- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :
 - Dictatorial strategies (the first author, the last author, or another author decides)
 - Majoritarian strategy (the majority preference prevails)
 - Conventional strategy (the signature most common in the target research area prevails)
 - Random/coin-flip (both individual preferences and context are ignored)

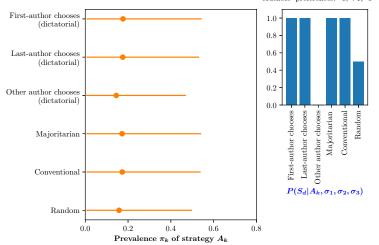
- Focusing on co-authored papers for which:
 - (i) The metric signature $S_d \in \{-1,+1\}$ of the paper is observed
 - (ii) The preference of each author $(\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$ is known independently from at least one solo-authored publication
- We can assume different preference aggregation strategies (A_k) :
 - Dictatorial strategies (the first author, the last author, or another author decides)
 - Majoritarian strategy (the majority preference prevails)
 - Conventional strategy (the signature most common in the target research area prevails)
 - Random/coin-flip (both individual preferences and context are ignored)
- We can estimate the prevalence of each strategy (π_k) given that they predict different outcomes (different probabilities $P(S_d | \sigma_1, \ldots, \sigma_n, A_k)$)

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



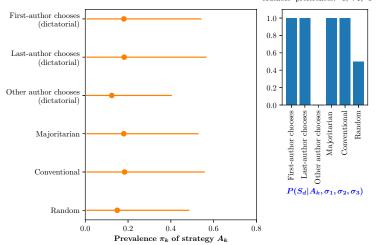
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



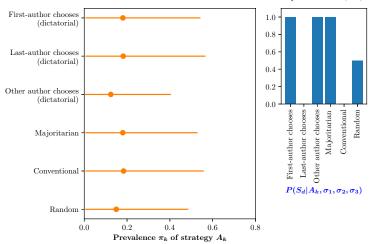
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

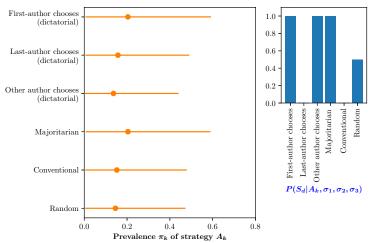
Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: +1, +1, -1

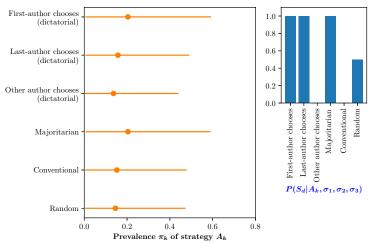
L. Gautheron (IZWT, ENS)

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: +1, +1, -1

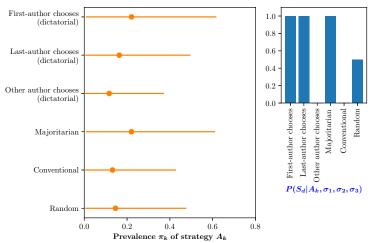
Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: +1, -1, +1

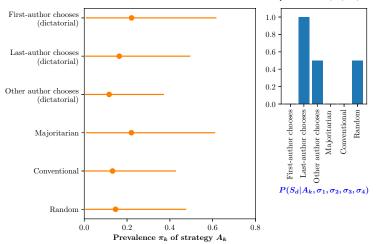
22/41

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



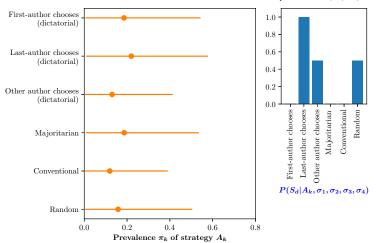
Paper signature $S_d = +1$ Authors' preferences: +1, -1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



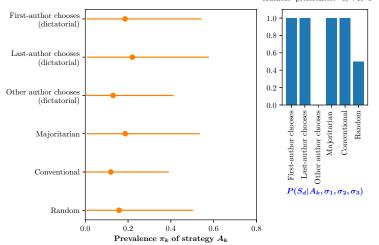
Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



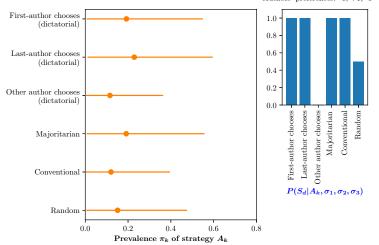
Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



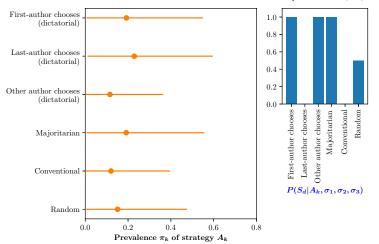
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



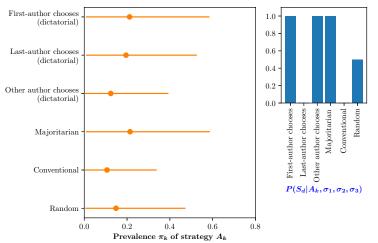
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



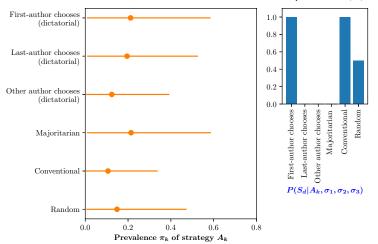
Paper signature $S_d = +1$ Authors' preferences: +1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



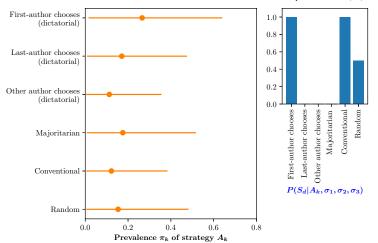
Paper signature $S_d = +1$ Authors' preferences: +1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



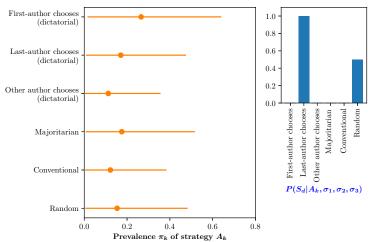
Paper signature $S_d = +1$ Authors' preferences: +1, -1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



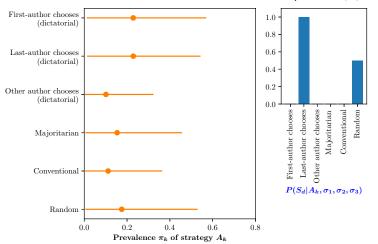
Paper signature $S_d = +1$ Authors' preferences: +1, -1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



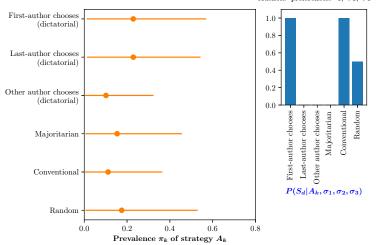
Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



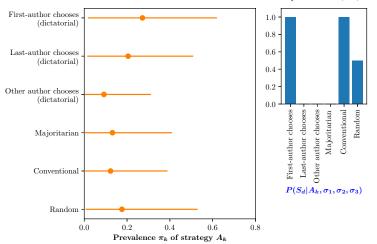
Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



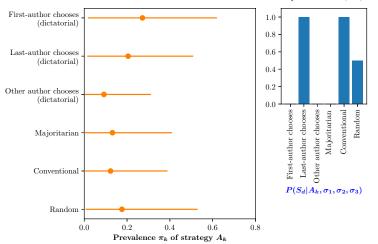
Paper signature $S_d=-1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



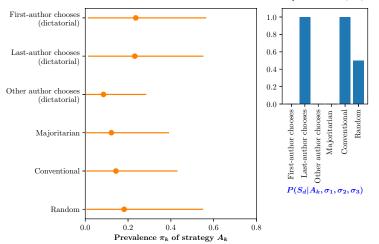
Paper signature $S_d=-1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



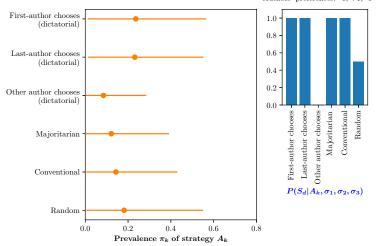
Paper signature $S_d=-1$ Authors' preferences: +1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



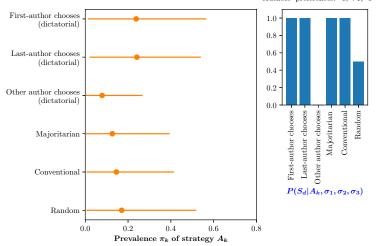
Paper signature $S_d=-1$ Authors' preferences: +1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



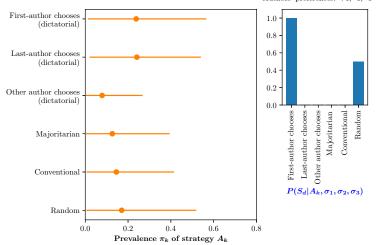
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



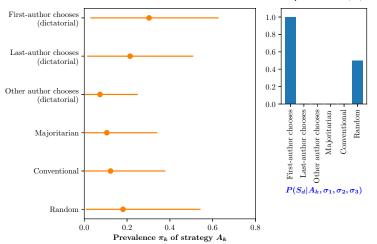
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



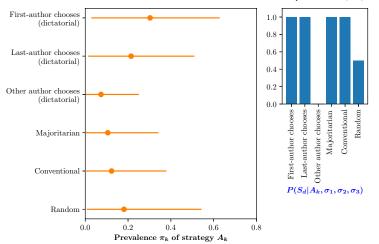
Paper signature $S_d = +1$ Authors' preferences: +1, -1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



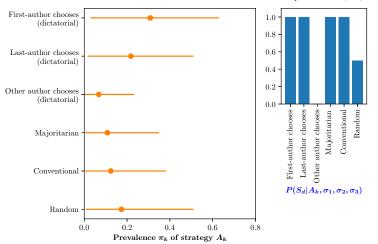
Paper signature $S_d = +1$ Authors' preferences: +1, -1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



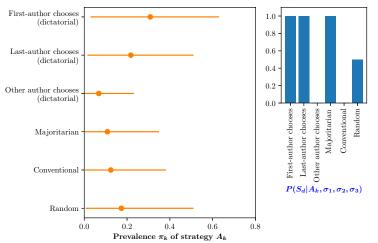
Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d=-1$ Authors' preferences: -1, +1, -1

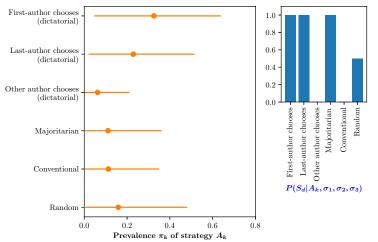
Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: +1, -1, +1

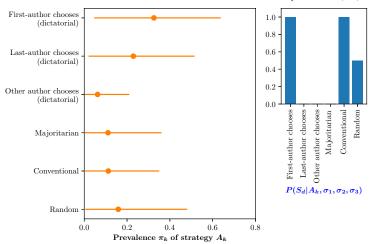
L. Gautheron (IZWT, ENS)

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



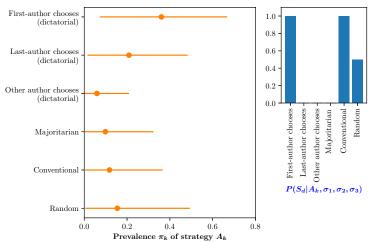
Paper signature $S_d = +1$ Authors' preferences: +1, -1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



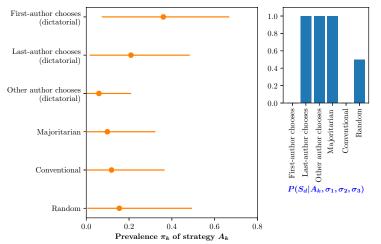
Paper signature $S_d=-1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



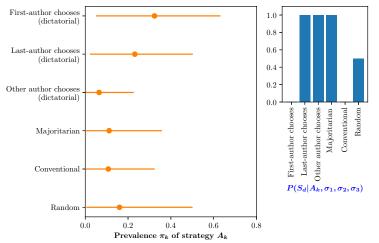
Paper signature $S_d=-1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



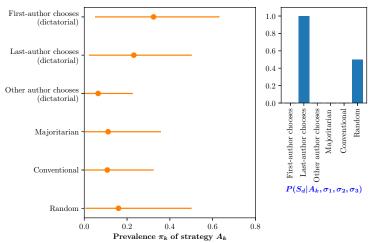
Paper signature $S_d = +1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



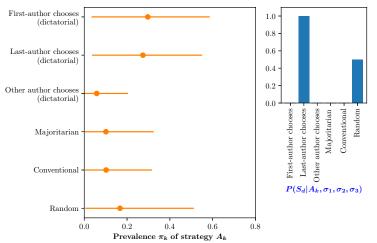
Paper signature $S_d = +1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



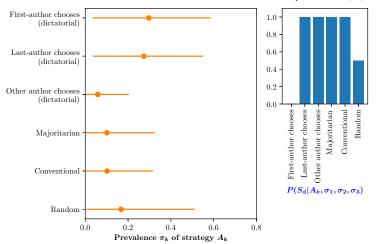
Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: -1, -1, +1

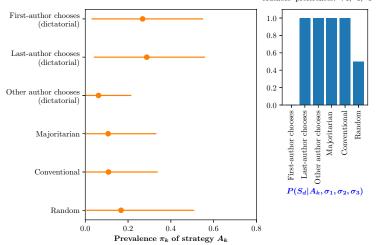
Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Authors' preferences: +1, -1, -1

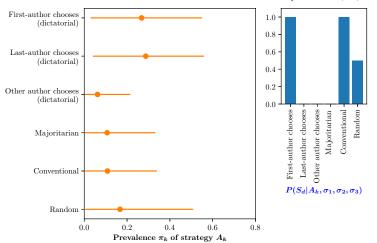
Paper signature $S_d = -1$

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



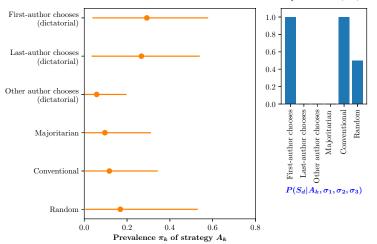
Paper signature $S_d = -1$ Authors' preferences: +1, -1, -1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



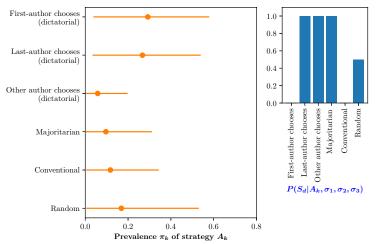
Paper signature $S_d=-1$ Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



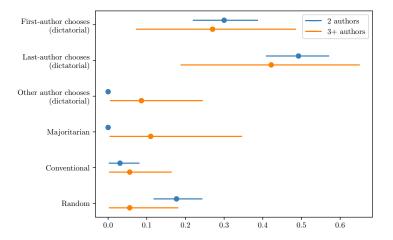
Paper signature S_d =-1 Authors' preferences: -1, +1, +1

Each paper brings a bit more information about π_k , the prevalence of an aggregation strategy A_k .



Paper signature $S_d = +1$ Authors' preferences: -1, +1, +1

Prevalence of each preference-aggregation strategy



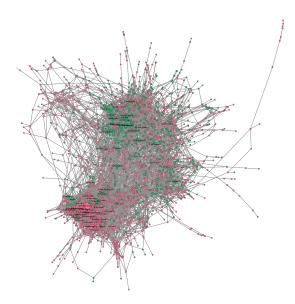
24/01/2025

Inverse problems for philosophers and agent-based modelers

A case-study of conventions: the metric signature in particle physics

- How do physicists choose which convention to use in their own papers?
- How do scientists resolve conflicting preferences in collaborations?
- How do physicists' preferences get formed?

Authors' preferences



Observed outcome: the preference of each author,

$$O_{\mathsf{obs}} = (\sigma_1, \dots, \sigma_n), \sigma \in \{-1, +1\}$$

(n = 2277 authors)

How do physicists' preferences get formed?

- Let's assume three models of the formation of physicists' preference towards the convention:
 - A "strategic agent" model (M₁) assuming that individuals navigate three costs (coordination costs, inconsistency costs, and maladaptation costs) depending on their collaborators' preferences and the research areas in which they publish.
 - **Q** A global cultural transmission model (M_2) , in which physicists settle once and for all for a specific convention with a certain probability that depends on their primary research area (textbooks?)
 - **a** A local cultural transmission model (M_3) , in which physicists copy the preference of their first collaborator.
- Which of these is more plausible given the observed patterns of preferences?

Example: the strategic agent model (M_1)

The model M_1 has multiple unknown parameters:

- c_s : the cost of switching from one convention to another
- c_c: the cost of disagreeing with co-authors
- c_r the cost of using a suboptimal convention in a given research area

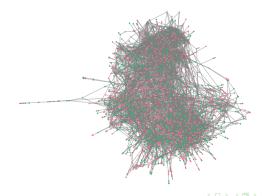
The **outcome** O_{sim} is the joint value of each author's preference: $O_{\text{sim}} = (\sigma_1, \dots, \sigma_n)$ where $\sigma_i = \pm 1$

Example: the strategic agent model (M_1)

The model M_1 has multiple unknown parameters:

- c_s : the cost of switching from one convention to another
- c_c: the cost of disagreeing with co-authors
- c_r the cost of using a suboptimal convention in a given research area

The **outcome** O_{sim} is the joint value of each author's preference: $O_{\text{sim}} = (\sigma_1, \dots, \sigma_n)$ where $\sigma_i = \pm 1$



$$P(M_1|O) = \overbrace{P(O|M_1)}^{P(M_1)} \frac{P(M_1)}{P(O)}$$

L. Gautheron (IZWT, ENS)

3

28 / 41

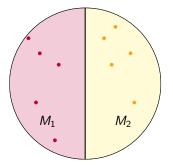
$$P(M_1|O) = \underbrace{P(O|M_1)}^{\text{Unknown}} \frac{P(M_1)}{P(O)}$$

L. Gautheron (IZWT, ENS)

3

28 / 41

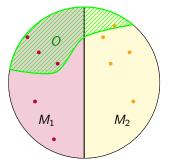
$$P(M_1|O) = \underbrace{P(O|M_1)}^{\text{Unknown}} \frac{P(M_1)}{P(O)}$$



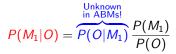
3

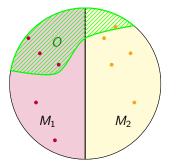
28 / 41

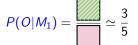
$$P(M_1|O) = \overbrace{P(O|M_1)}^{\text{Unknown}} \frac{P(M_1)}{P(O)}$$

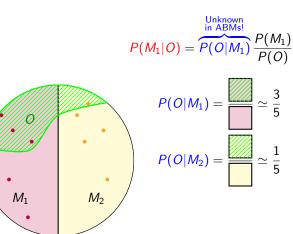


28 / 41

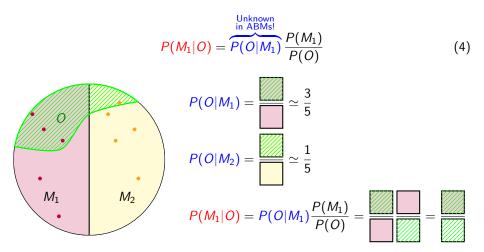


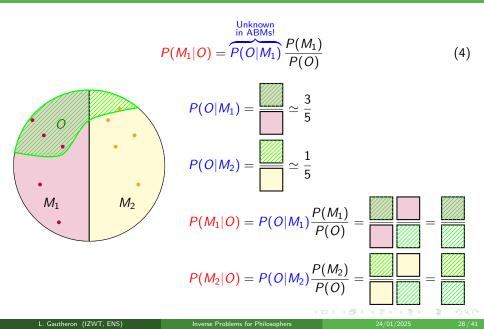






28 / 41





• At least some simulations O_s must match the observed outcome O, which means matching each of the 2277 authors' preferences at the same time!

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"
- Solution: "conditioning" on summary statistics rather than the entire data.

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2 277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"
- Solution: "conditioning" on summary statistics rather than the entire data.
- Summary statistics are **concise descriptions of the data** that capture essential features. e.g.:

$$m = \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_i \right| \text{ (where } \sigma_i = \pm 1\text{)}$$
(5)

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2 277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"
- Solution: "conditioning" on summary statistics rather than the entire data.
- Summary statistics are **concise descriptions of the data** that capture essential features. e.g.:

$$m = \frac{1}{n} |\sum_{i=1}^{n} \sigma_i| \text{ (where } \sigma_i = \pm 1) \tag{5}$$

$$\mathcal{O}_{\text{obs}} = \longrightarrow m_{\text{obs}} = 0.03$$

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"
- Solution: "conditioning" on summary statistics rather than the entire data.
- Summary statistics are **concise descriptions of the data** that capture essential features. e.g.:

$$m = \frac{1}{n} |\sum_{i=1}^{n} \sigma_i| \text{ (where } \sigma_i = \pm 1) \tag{5}$$

$$O_{\text{obs}} = \longrightarrow m_{\text{obs}} = 0.03$$

$$O_{\text{sim}} = \longrightarrow m_{\text{sim}} = 0.03$$

$$(5)$$

- At least some simulations O_s must match the observed outcome O, which means matching each of the 2 277 authors' preferences at the same time!
- Virtually impossible (95% chance of predicting any individual preference σ_i correctly $\Rightarrow 2 \times 10^{-51}$ of getting all of them right at once)
- The data has too many dimensions ⇒ "curse of dimensionality"
- Solution: "conditioning" on summary statistics rather than the entire data.
- Summary statistics are **concise descriptions of the data** that capture essential features. e.g.:

$$m = \frac{1}{n} |\sum_{i=1}^{n} \sigma_i| \text{ (where } \sigma_i = \pm 1) \tag{5}$$

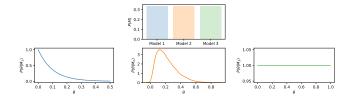
$$O_{\text{obs}} = \longrightarrow m_{\text{obs}} = 0.03$$

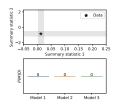
$$O_{\text{sim}} = \longrightarrow m_{\text{sim}} = 0.03$$

$$(5)$$

There are two main approaches for choosing adequate summary statistics:

- Hand-picking interpretable summary statistics based on our own intuitions.
- Using sophisticated methods to learn statistically optimal (but potentially un-interpretable) summary statistics. Optimal summary statistics reduce our posterior uncertainty given a fixed amount of data.

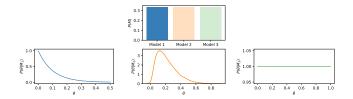


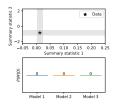


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

01/2025

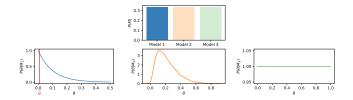


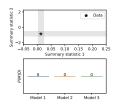


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

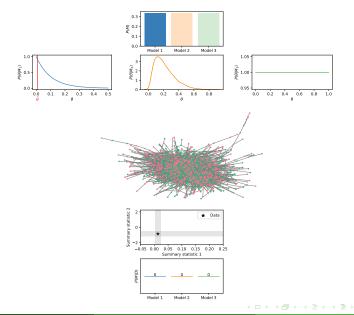
01/2025





Inverse Problems for Philosophers

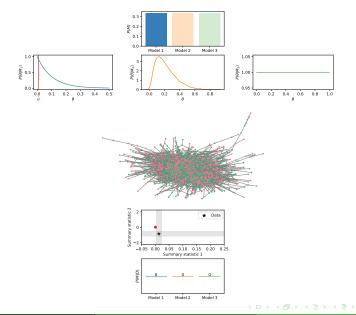
/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

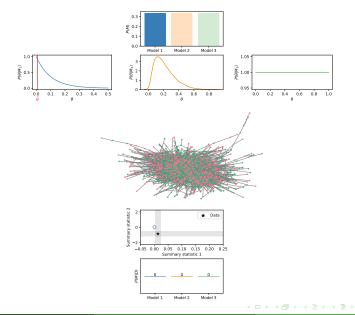
24/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

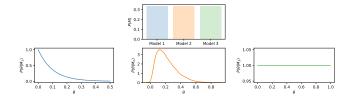
24/01/2025

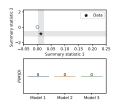


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

24/01/2025

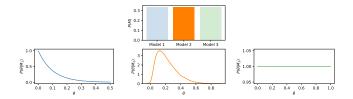


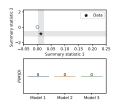


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

01/2025

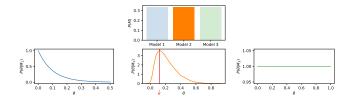


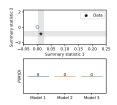


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

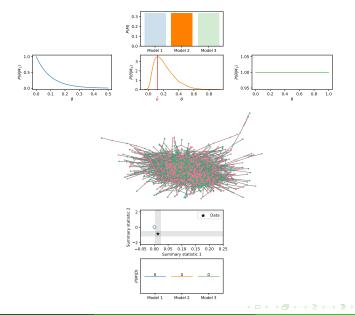
01/2025





Inverse Problems for Philosophers

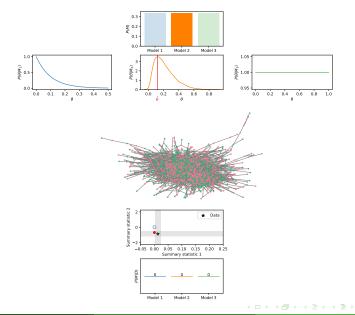
/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

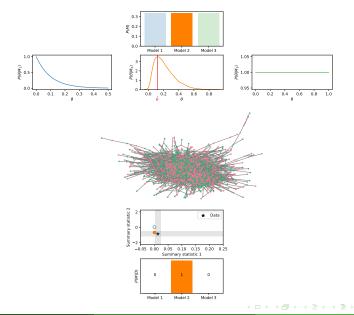
24/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

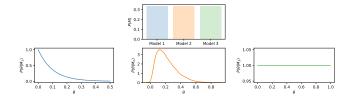
24/01/2025

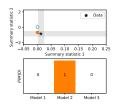


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

24/01/2025

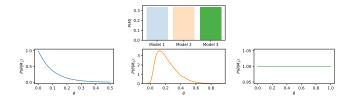


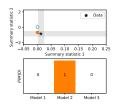


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

/01/2025

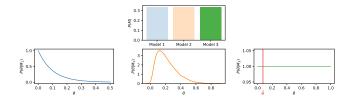


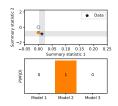


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

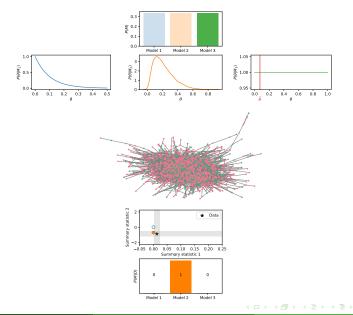
/01/2025





Inverse Problems for Philosophers

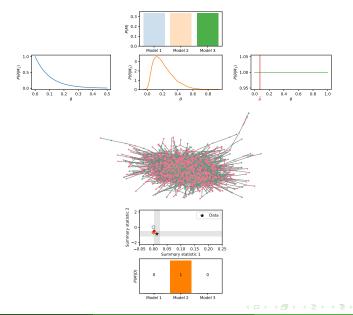
/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

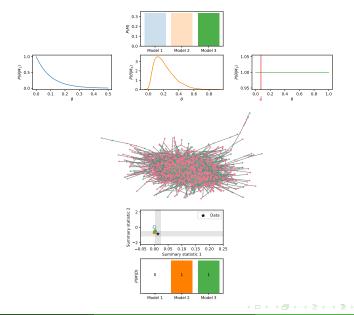
24/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

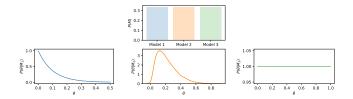
4/01/2025

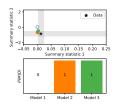


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

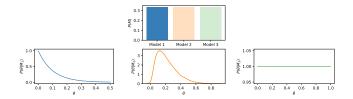
4/01/2025

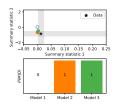




Inverse Problems for Philosophers

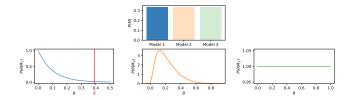
/01/2025

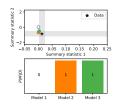




Inverse Problems for Philosophers

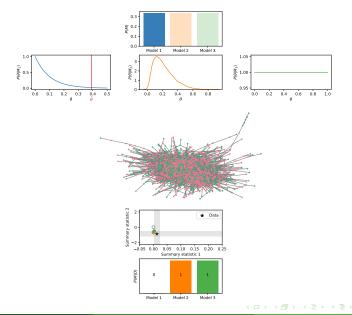
/01/2025





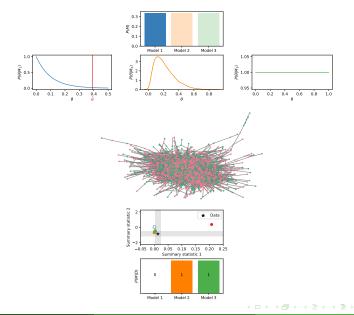
Inverse Problems for Philosophers

4/01/2025



Inverse Problems for Philosophers

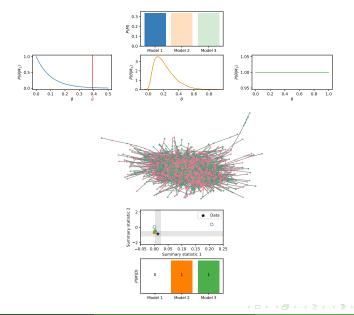
4/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

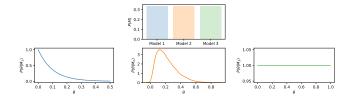
4/01/2025

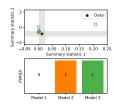


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

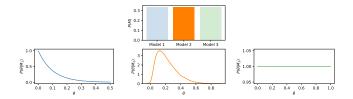
4/01/2025

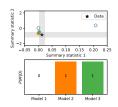




Inverse Problems for Philosophers

/01/2025

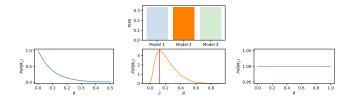


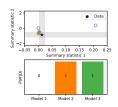


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

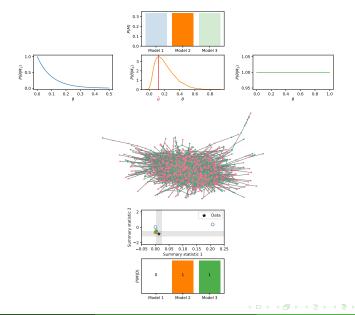
01/2025





Inverse Problems for Philosophers

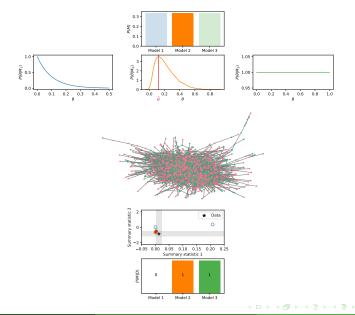
/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

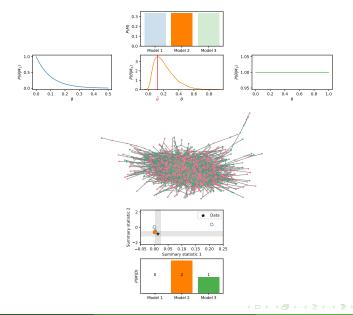
4/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

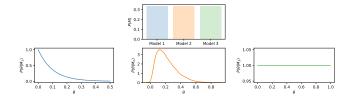
4/01/2025

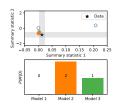


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

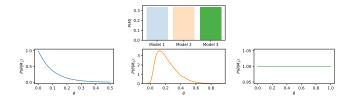
4/01/2025

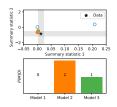




Inverse Problems for Philosophers

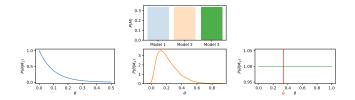
4/01/2025

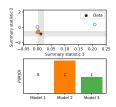




Inverse Problems for Philosophers

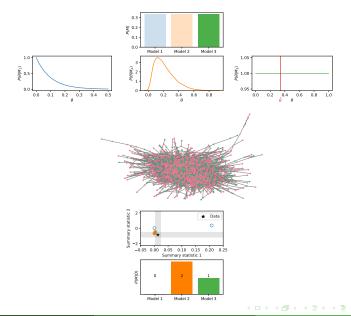
4/01/2025





Inverse Problems for Philosophers

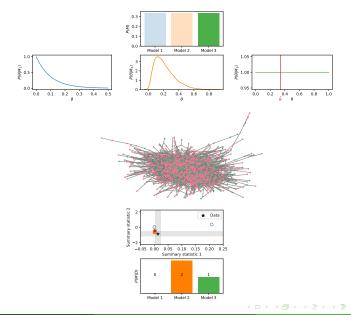
/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

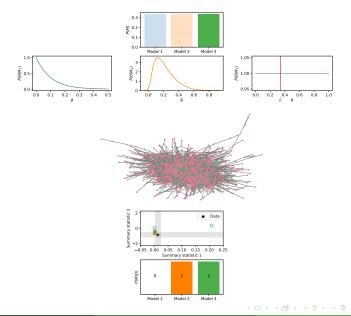
4/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

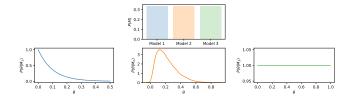
4/01/2025

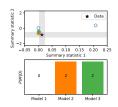


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

4/01/2025

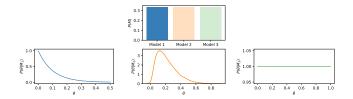


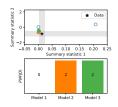


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

01/2025

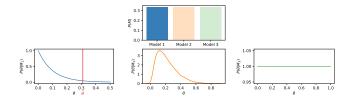


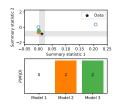


L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

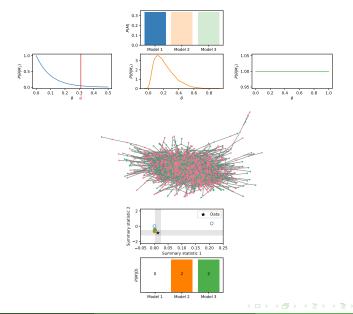
/01/2025





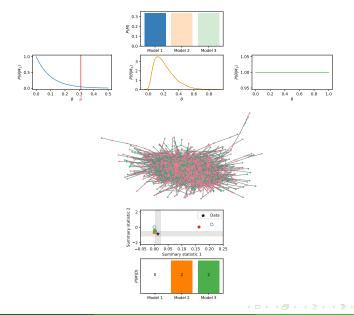
Inverse Problems for Philosophers

01/2025



Inverse Problems for Philosophers

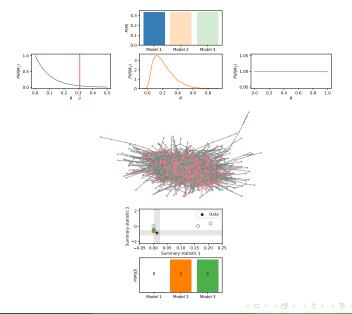
4/01/2025



L. Gautheron (IZWT, ENS)

Inverse Problems for Philosophers

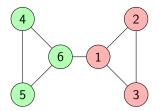
4/01/2025



Inverse Problems for Philosophers

4/01/2025

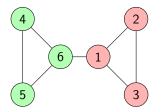
Local versus global mechanisms of coordination

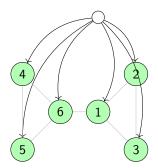


Local coordination

Strategic alignment, imitation of peers... J

Local versus global mechanisms of coordination





Local coordination

Strategic alignment, imitation of peers... J

Global coordination

Adaptation to research purposes, or shared culture ("disciplinary matrix") **B**

The Ising model as an intermediate idealized model

- Atomic magnetic spins in a material can be in two states: \uparrow (+1) or \downarrow (-1).
- Magnetic spins prefer to be aligned to their neighbors ($\uparrow\uparrow$ or $\downarrow\downarrow)$)
- Can local interactions between spins at the microscopic level lead to macroscopic alignment?

$$P(\{\sigma_i\}|J, \boldsymbol{B}) = \frac{1}{Z(J, \boldsymbol{B})} e^{-H(\{\sigma_i\}, J, \boldsymbol{B})}, \text{ and } H = -\underbrace{\sum_{i,j} Jw_{ij}\sigma_i\sigma_j}_{\text{local pairwise interactions}} \underbrace{-\sum_i B_{C_i}\sigma_i}_{\substack{\text{external magnetic field}}}$$
(6)

https://mattbierbaum.github.io/ising.js/

Inverse Ising problem: $P(J, J^{cit}, \boldsymbol{B} | \{\sigma_i\})$

Local coordination in multi-layered graphs

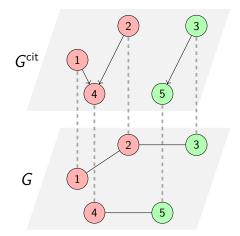


Figure: **Illustration of local coordination in multilayered social networks**. Nodes can be connected through different kinds of relationships (for instance, authors can be related via collaborations (G) or citations (G^{cit})).

Local versus global coordination

Table: Parameters of the Ising model.

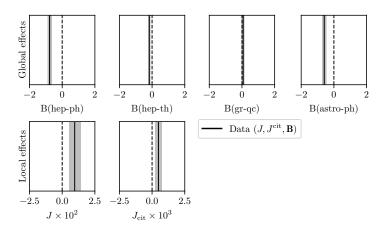
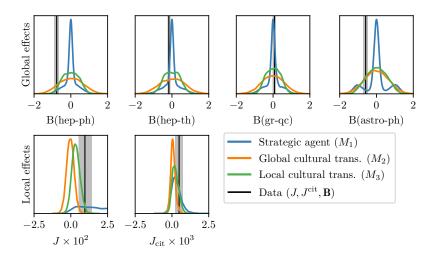


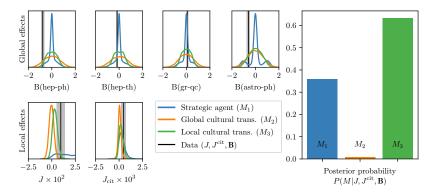
Figure: Ising model fit

Local versus global coordination

What values of **J** and **B** do our models predict? In other words, what is the probability $P(J, J^{cit}, \mathbf{B}|M_i)$ for each model M_i ?



Given $P(J, J^{cit}, \boldsymbol{B}|M_i)$, and the true values of J and \boldsymbol{B} , what is $P(M_i|J, J^{cit}, \boldsymbol{B})$? After a bit of computational trickery – "amortized simulation-based model comparison with neural networks" with BayesFlow –:



• Model misspecification: model comparison among highly incorrect models is challenging/meaningless

- Model misspecification: model comparison among highly incorrect models is challenging/meaningless
- Priors on models' parameter matter. A model is disadvantaged if it only is a good fit to the data for improbable parameter values.

- What phenomenon? (Belief-polarization? Discrimination and marginalization? etc.)
- What models? ("model-space")
- What data?
 - Accessibility (reasonable time/financial cost)
 - Quality (bias? ecological validity?)
 - Quantity (statistical significance)
- What computational strategies?
 - Pre-processing: e.g. text-classification (natural language processing)?
 - Inference (inverse problem): simulation-based inference (with/without neural networks); Hamiltonian Monte-Carlo? Metropolis?

Thank you! I

- Centola, Damon and Andrea Baronchelli (Feb. 2015). "The spontaneous emergence of conventions: An experimental study of cultural evolution". In: *Proceedings of the National Academy of Sciences* 112.7.

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe (May 2020). "The frontier of simulation-based inference". In: *Proceedings of the National Academy of Sciences* 117.48.

Delgado, Jordi (2002). "Emergence of social conventions in complex networks". In: Artificial intelligence 141.1-2.

Hawkins, Robert XD, Noah D Goodman, and Robert L Goldstone (2019). "The emergence of social norms and conventions". In: *Trends in cognitive sciences* 23.2.

Lewis, David (Jan. 1969). *Convention: A Philosophical Study*. Cambridge, MA: Harvard University Press.

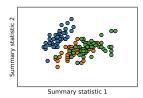
O'Connor, Cailin (June 2020). "Measuring Conventionality". In: Australasian Journal of Philosophy 99.3.

Pujol, Josep M et al. (2005). "The role of clustering on the emergence of efficient social conventions". In: *Proceedings of the 19th international joint conference on Artificial intelligence.*

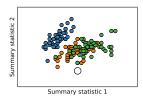
- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:

- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)

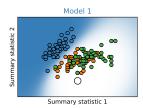
- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)



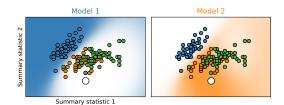
- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)



- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)



- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)



- Even with summary statistics, simulation-based inference is difficult because no simulated sample will *exactly* match the observed data.
- Solution:
 - Use amortized inference with neural networks \Rightarrow train a neuralnet to predict the probability of each model M_i given one or more observed outcomes. The neuralnet is trained with many simulated training samples (M_s, O_s) (Radev et al., 2021)

