
Dilemmas and trade-offs in the diffusion of conventions

Lucas Gautheron1,2

lucas.gautheron@gmail.com

January 28, 2025

Abstract

Outside ideal settings, conventions are shaped by heterogeneous competing processes
that can challenge the emergence of universal norms. This paper identifies three trade-offs
challenging the diffusion of conventions and explores each of them empirically using observa-
tional behavioral data. The first trade-off (I) concerns the imperatives of social, sequential,
and contextual consistency that individuals must balance when choosing between compet-
ing conventions. The second trade-off (II) involves the balance between local and global
coordination, depending on whether individuals coordinate their behavior via interactions
throughout a social network or external factors transcending the network. The third trade-
off (III) is the balance between decision optimality (e.g., collective satisfaction) and decision
costs when collectives with conflicting preferences choose one convention. We develop a
utilitarian account of conventions which we translate into a broadly applicable statistical
physics framework for measuring each of these trade-offs. We then apply this framework
to a sign convention in physics using textual and network data. Our analysis suggests that
the purpose of conventions may exceed coordination, and that multiple infrastructures (in-
cluding prior cultural traits and social networks) concurrently shape individual preferences
towards conventions. Additionally, we confirm the role of seniority in resolving conflicting
preferences in collaborations, resulting in suboptimal outcomes.

Keywords: conventions; collective behavior; cultural evolution; Ising model; inverse prob-
lems; simulation-based inference.

1 Introduction

Since the seminal work of David Lewis [1], conventions (including linguistic norms, technological
or manufacturing standards, and many other social norms) are primarily conceived as solutions
to coordination problems [2]. Yet, the present paper argues that the attitude of individuals
towards conventions involves a multitude of factors beyond social coordination, resulting in
tensions that may disrupt the emergence of a universal norm. To this end, we identify three
trade-offs involved in the diffusion of conventions and the resolution of conflicting preferences
in the absence of consensus. In addition, we show how a statistical physics approach can
provide information about these trade-offs in naturally occurring scenarios. The first trade-off
is the balance between i) social consistency (driven by coordination with peers), ii) sequential
consistency (driven by the cost of switching from one practice to another), and iii) contextual
consistency (driven by the adaptation to contextual constraints) (§1.2). The second trade-off
involves the balance between local versus global coordination, depending on whether individual
preferences are formed endogenously through local interactions on a network, or by factors
transcending the network structure (or both, in possibly contradicting ways) (§1.3). Finally,
the last trade-off is the balance between decision costs and the optimality of outcome in the
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resolution of conflicts (§1.4). To explore these trade-offs, we develop an utilitarian account
translated into a statistical physics framework which we apply to behavioral data about a sign
convention in physics. This statistical framework allows us to retrieve information about the
underlying coordination problem and the multiple infrastructures involved in the propagation
of this convention. First, we show that scientists’ attitude is driven by sequential consistency
as they tend to maintain a preferred choice in their solo-authored publications independently
of the target research area (§2). Then, we show that scientists’ preferences are correlated
– albeit imperfectly – with those of their co-authors, such that some level of coordination is
achieved (§3). In order to explain how, the relative contribution of local coordination (via dyadic
interactions with peers) and global coordination (i.e. via shared culture) is measured by solving
an inverse Ising problem over the authors’ collaboration and co-citation network. Interestingly,
this approach can recover the underlying game structure while simultaneously comparing the
contribution of multiple social networks to the emergence of coordination. Third, we assess the
plausibility of three mechanisms of preference-formation according to their ability to explain
the observed magnitudes of local and global coordination, and find slightly more evidence for a
model of cultural transmission involving the imitation of peers (§4). Finally, we infer the process
through which scientists resolve conflicts about which convention to use in collaborations (§5).
We find evidence that the last author’s preference most often prevails, thus highlighting the role
of seniority and power in the resolution of coordination problems, potentially to the detriment of
optimality. Taken together, these results indicate that decision-making about which convention
to follow involves multiple factors that can come into conflict.

1.1 Background

While formal models of conventions provide rich insights by focusing on one or a few key features
of the phenomena of interest, they may also leave out crucial aspects of reality by stripping away
too much of its complexity [3], or by neglecting the interactions between phenomena studied
in isolation. For instance, [4, 5] demonstrated the importance of accurately representing the
topological features of complex networks (including their small-world, scale-free or clustering
properties) for modeling and simulating the propagation of conventions. Similarly, while con-
trolled experiments can uncover certain aspects of conventions in idealized settings [6–10], they
may conceal the fact that complex heterogeneous processes can drive or prevent the emergence
of conventions in naturalistic situations [11]. For instance, while social structures are artificially
manufactured in experimental settings, one may not even know which social infrastructure is
actually involved in the emergence of a convention in naturalistic situations. Fortunately, the
advent of large online communities has opened up opportunities to investigate the diffusion of
norms and conventions in complex networks [12], with prominent examples including Twitter
[13] and Wikipedia [14]. Interestingly, to our knowledge, such data-driven approaches have
not extended to the study of scientific conventions. Yet, “conventionalism” can be traced back
to Poincaré, who developed geometric conventionalism as an account of the epistemic status
of the axioms of geometry [15]. Additionally, conventions are ubiquitous in science, including
statistical practices (such as statistical significance thresholds, which determine the level of in-
ductive risk [16]), standard measures [17], unit systems, and technical jargon. Nevertheless,
previous culturally evolutionary perspectives on science [18] have not connected formal models
of conventions to empirical data from scientific settings, a gap that this paper addresses. This
highlights the interactions between multiple phenomena involved in the diffusion of conventions
that prior works have addressed separately or ignored, and provides cues for understanding how
conventions can fail to develop into universal norms, in naturalistic settings.

Let us introduce the convention examined in the present paper. In relativistic physical
theories (such as general relativity and quantum field theory), the “metric tensor” is a mathe-
matical object that represents the metric properties of space-time. It can be seen as a matrix
that defines a pseudo-distance between events according to their time and space coordinates.
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In particular, in the vacuum, one can choose the metric tensor to take either of the following
forms: 

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 or


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 (1)

The first choice (+,−,−,−) is known as the mostly minus convention (or west-coast con-
vention) while the second choice, (−,+,+,+) is referred to as the mostly plus convention (or
east-coast convention). These choices are physically equivalent and lead to identical predictions.
However, depending on which choice one makes, certain quantities arising in calculations will
take either positive or negative values. Interestingly, there is no norm and both conventions are
used. .

1.2 The trade-off between social, sequential, and contextual consistency

Below, we elaborate an utilitarian description of the effect of social, sequential, and contextual
consistency on individuals’ decision-making. By analogy with statistical physics, we translate
this description into probabilistic models suitable for empirical exploration.

Social consistency and coordination costs Conventions are mainly conceived as solu-
tions to coordination problems [1], which arise when individuals would benefit from acting in
a mutually consistent way, but struggle to do so – maybe, for instance, because they lack the
information necessary for achieving joint-action [1, 2]. Conventions can solve such coordination
problems by providing individuals with expectations about how others will behave in a given
setting, a paradigmatic example being left-hand versus right-hand traffic. In absence of estab-
lished conventions, individuals experience coordination costs in their interactions. If interactions
involve two people at a time, coordination costs can be represented by a payoff matrix that de-
fines the utility (i.e. the rewards) ui,j(xi, xj) for agents i and j as a function of xi and xj , their
respective strategies (see examples in Table 1). Additionally, coordination costs are specified by

Table 1: Examples of two-player two-action coordination games, defined by their payoff matrix.
Cells indicate (ui(xi, xj), uj(xi, xj)), the rewards of i and j as a function of their joint strategy.

(a) Asymmetric coordination game (“Battle of
the Sexes”).

xj = A xj = B

xi = A (a, b) (0, 0)

xi = B (0, 0) (b, a)

(b) Symmetric coordination game under asym-
metric conventions. If a ̸= b, then the choice
between A and B is less arbitrary.

xj = A xj = B

xi = A (a, a) (0, 0)

xi = B (0, 0) (b, b)

a network structure, which can be represented by a graph which edges’ weights wij encode the
frequency of interactions between any pair (i, j) of agents. More complicated games may require
more complex structures (such as hypergraphs) in order to fully characterize coordination costs.
In naturalistic scenarios (outside of controlled experiments), given observations of individuals’
strategies, one may want to retrieve the structure of the underlying game (e.g. Table 1a versus
1b) or to infer the social network truly involved. Incidentally, it has recently been shown that
coordination games (Table 1) [19, 20] can be mapped onto models from statistical mechanics,
which, as we show, can be exploited for empirical explorations of conventions. To this end, one
constructs a “potential” U(x1, . . . , xn) [21], which is a function of the joint strategy of every
individual 1 ≤ i ≤ n that varies by

∑
j wij [ui(x

′
i, xj) − ui(xi, xj)] as any agent i unilaterally
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changes their strategy from xi to x′i. By analogy with statistical physics, the probability of a
particular combination of individual strategies can then be expressed as:

P (x1, . . . , xn) =
1

Z
eβU(x1,...,xn) (2)

Where Z is a normalization constant and β ≥ 0 controls the degree of rationality – and
efficiency – of the agents [20]. In physics, (2) is the Boltzmann distribution; U is (minus)
the energy potential of a particular configuration, and β is the inverse temperature1. This
probabilistic framework enables the retrieval of information about the coefficients of the payoff
matrix (ui,j) or the network structure (wij) from observations of individuals’ strategies, as shown
in §32.

Sequential consistency and switching costs In addition to addressing coordination prob-
lems, conventions enable individuals to settle on a specific choice among different options once
and for all, in a way that facilitates future moves. Consider keyboard layouts. While there exists
many such layouts (e.g. qwerty and azerty – in fact, the space of all possible keyboard layouts
is very large –), we benefit from settling on one single layout, even if our choice is arbitrary
and different from our peers’. In that respect, certain conventions can serve a purely internal
purpose of consistency, as if individuals “played” a coordination game with themselves, such
that their payoffs depend on whether their consecutive actions are mutually coherent. When
switching costs are high, individuals may fail to adjust to their social environment. To model
sequential consistency, let xit be the convention employed by agent i at time t ∈ {1, . . . , T}. A
simple model of the switching costs experienced by an isolated individual for a given sequence of
choices is a Markov model where U(xi1, . . . , xiT ) =

∑T−1
t=1 u(xi,t, xi,t+1), where u(x, y) is the pay-

off associated with the transition from x to y, and u(x, y) < 0 for x ̸= y. In such a model, agents
experience instantaneous and non-persisting costs whenever they switch from one convention
to another. Alternatively, sequential consistency may reflect lasting preferences with memory
effects. In this case, instead of modeling complex long-term interactions between individual
actions, one might consider the effective model U(xi1, . . . , xiT ) =

∑T
t=1 u

xit
i where uxi designates

the utility associated with choice x for agent i (as assumed in §2). Again, we may assume that
the probability of a particular sequence takes the form P (xi1, . . . , xiT ) ∝ eβU(xi1,...,xiT ), where β
is, again, a measure of efficiency.

Contextual consistency and maladaptation costs Some conventions are less conven-
tional than others [23, 24]. Among multiple candidates, certain maladaptive conventions are
potentially less likely to emerge. Maladaptation costs can disrupt the emergence of norms if
individuals are confronted to different contexts for which different conventions are best (Table
1a). Unit systems, for instance, feature context-dependent maladaptation costs. Although they
do promote social and sequential coordination as other conventions, some unit systems have
a small advantage in specific contexts. For instance, light-years might be a convenient unit of
length for astronomers, but engineers may reasonably prefer millimeters. Maladaptation costs
can be framed as a lack of consistency between a given convention and other cultural traits.
This can be thought of in terms of a cultural fitness landscape [25], where f(b1, . . . , bn) describes
the fitness of a configuration of traits b = (b1, . . . , bn) ∈ {±1}n. It is possible that the choice
between, say, b1 = −1 or +1 is “conventional”, in the sense that there is no universally superior
choice across the landscape (i.e. E[f |b1 = −1] ≃ E[f |b1 = +1]), even though certain regions
in the landscape may locally favor a specific choice for b1

3. The utility uxi
i associated with a

1Often, β may be omitted without loss of generality through proper rescaling of U .
2Individuals’ behavior depends also on evolutionary rules that specify how they update their strategies. For

“potential” games, the “logit” rule and the Glauber dynamics lead to the above Boltzmann distribution [21, 22]
3This is obvious in the context of language. The mapping between objects and symbols is highly conventional;

however, for a given pre-existing language, the choice of how to name a new object can be constrained by preceding
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particular choice xi then depends on the position of i in the cultural landscape, and agents in
the same region of the landscape may converge in behavior for reasons independent of social
coordination (Table 1b).

Generally speaking, conventionality arises when behavior is determined by “collective”
rather than individual constraints. For instance, in the case of sequential consistency, it does
not matter what is the first move, as long as the entire sequence of actions is collectively con-
sistent4. Finally, contextual consistency is also a collective constraint, since it assumes there
is no way to universally reject a particular choice independently from the context in which it
plays out5.

Generally, it is plausible that all three factors are involved in conventions, albeit to varying
extents. For the metric signature, coordination costs are plausible: it should be easier to
collaborate with scientists who will systematically agree to using your favorite convention, and
it is easier to copy results from other papers if those are systematically derived with the same
convention. Switching costs are seemingly plausible, as working with different metric signatures
implies keeping track of which sign certain quantities must take according to which convention
is used. Finally, maladaptation costs might be involved too. For instance, for problems that
involve “proper time” calculations, the mostly minus metric is advantageous, since then proper
time is equal to the pseudo-distance between events rather than minus the pseudo-distance.

In §2, we start by evaluating the importance of sequential consistency and context in the
case of the metric signature. It will be shown that both matter, but sequential consistency
matters more, such that individuals tend to stick to their favorite convention across contexts.
Therefore, physicists have preferences towards a metric signature. We may then ask how these
preferences are formed.

1.3 Local and global processes in the diffusion of conventions

The emergence of norms is the byproduct of both “local”, “dyadic” processes and pre-existing
“broader population-level infrastructure” [2], including social networks or central authorities
[27]. In particular, we propose to make a distinction between local and global processes of co-
ordination. By “local” coordination, we mean, coordination emerging from local interactions
on a network (e.g. by the imitation of peers [28], or strategic adjustment to their behavior), as
opposed to “global” processes resulting from external factors transcending the network struc-
ture, including institutions and “central authorities” [27], cultural artifacts, as well as any pre-
established cultural traits shared within different groups. Asymmetric conventions (for which
certain choices are advantageous, cf. Table 1b) may propagate globally if individuals share
the understanding that one option is superior. In scientific communities, local processes may
propagate over a co-authorship network, while global factors may include a shared “disciplinary
matrix” [29]. The local/global distinction resembles the endogeneous/exogeneous distinction
made in previous works exploring the dynamics of collective attention in social media (e.g.
[30]), where “endogenous” refers to behavior driven by interactions on a social network, and
“exogenous” refers to processes dictated by external factors such as the mass media.

Figure 1 illustrates how local and global processes may generate different patterns of coor-
dination. In an evolutionary game theoretic framework, locality implies that agents may only
update their strategy based on the behavior of their own neighbors. In this particular example,
local coordination fails to produce consensus as the network is stuck into a Nash equilibrium.
Occasionally, “global” processes may solve this type of failure. Alternatively, local and global

linguistic infrastructure.
4One might say that the marginal probability of a particular outcome p(xi) is not constrained; only the joint

probability of all outcomes p(x1, . . . , xn) is.
5See epistemological holism, according to which beliefs are constrained collectively rather than in individually

[26].
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forces may push in opposite directions and complicate the emergence of a norm [31] – for
instance, if different groups with incompatible inclinations come into contact.
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Figure 1: Left. Example of local coordination: nodes align to their neighbors through pairwise
interactions. Right. Example of global coordination: nodes are coordinated by a common
cause transcending the graph structure (e.g., a textbook that all authors might have learned
from). Local and global processes can sometimes generate different patterns. Global mecha-
nisms (driven by shared culture, common knowledge, or institutions) can enhance coordination
in circumstances where it would be hard to achieve via local processes alone.

In §3, using an Ising model – which arises naturally from eq. (2) in coordination games
[20] –, we measure the contribution of local (J) and global (B) mechanisms to the formation
of physicists’ preferences. We find evidence for both local and global effects in the case of the
metric signature, while the latter seem to pre-dominate. Moreover, as will be shown in §4,
this Ising model approach allows us to compare the plausibility of more realistic mechanisms of
preference-formation, according to whether they generate local or global coordination patterns.
In particular, we consider three different mechanisms for the formation of scientists’ preferences
(without making a strong commitment to any of them), and assess their relative plausibility
according to their ability to account for the measured values of J (local coordination) and B
(global coordination). The first mechanism is an agent-based model that assumes physicists
operate a trade-off between coordination costs, switching costs, and maladaptation costs. The
second mechanism is a process of global cultural transmission (capturing, for instance, cultural
transmission via textbooks) and the third mechanism considers local cultural transmission (via
the imitation of peers), a channel that has the potential to propagate conventions [28].

1.4 Optimality versus decision costs in the resolution of conflicts

In the absence of a universal norm, how can coordination be achieved among individuals with
conflicting preferences? Co-authorship of scientific papers provides a case in point of conflict-
resolution. In order to produce a paper, authors might have to overcome disagreements about
certain choices, such as which metric signature to use throughout their calculations. They must
then operate a trade-off between “optimality” (e.g. the maximization of their collective sat-
isfaction), and “decision costs” (alternatively referred to as “transaction costs” [32]). Indeed,
co-authors can seek to maximize their collective satisfaction by making a collective decision,
through deliberation of bargaining. However, this can be cumbersome: not all decisions deserve
to be put under the whole collective’s scrutiny, and it might be easier to let a leader decide,
potentially at the expense of collective agreement. It is indeed well known that organizations
typically develop into hierarchical structures with power and leadership asymmetries to mit-
igate decision and transaction costs and facilitate coordination [32, 33]. In §5, we infer the
mechanisms via which physicists resolve conflicts in co-authored papers. We find some evidence
that leadership also plays a role in the resolution of conflicting preferences towards the metric
signature, potentially at the expense of the optimality of the decision.
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Figure 2: Three trade-offs affecting conventions and their relationships.

We have identified three trade-offs affecting conventions. Figure 2 summarises these trade-
offs and highlights their interactions. In what follow, we provide empirical evidence for these
trade-offs.

1.5 Data

Literature in high-energy physics is collected from the Inspire HEP database of high-energy
physics, which includes various metadata (authorship, institutional affiliations, etc.). Their
LaTeX source is retrieved from arXiv when available. 22500 papers from four categories
(Phenomenology-HEP, Theory-HEP, General Relativity & Quantum Cosmology, and Astro-
physics) are successfully classified into either metric signature (±1) using a small set of regular
expressions (see Appendix A.1).

2 Beyond coordination: the role of sequential and contextual
consistency

We have postulated that individuals’ attitude towards conventions may be influenced not only
by imperatives of coordination (i.e. social consistency), but also by imperatives of sequential
and contextual consistency. If sequential consistency matters, individuals should tend to use
the same convention throughout their own works. By contrast, if individuals behave differently
across research areas, we may infer that they value contextual consistency.

Below, we measure the importance of sequential and contextual consistency in scientists’
behavior. We consider only solo-authored papers, for which the choice of metric purely reflects
the sole author’s choice. In order to capture the imperatives of sequential and contextual
consistency, we assume that the probability that an author i uses the +1 sign convention in a
paper d is:

P (σd = +1|i, c) = logit−1(θi + bc) =
e

1
2
(θi+bc)

e
1
2
(θi+bc) + e−

1
2
(θi+bc)

(3)
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where θi is a latent parameter that encodes author i’s preference (θi > 0 implying a prefer-
ence for the +1 convention) and bc is a latent parameter that encodes the bias associated with
context c (the category of literature to which the paper belongs6). From a statistical physics
perspective, this model can is the Boltzmann distribution of a physical system that can find
itself in either of two states (±1), where the degeneracy – the equivalence between these states
– is “broken” by individuals’ concerns for sequential and contextual consistency7. We assume
that θi is drawn from a mixture of two distributions (θi = ±µ), such that the model may cap-
ture the existence of two populations with a preference for each metric. We also assume that
bc ∼ N (0, 1)8. If |µ| is typically large, and larger than |b|, this would imply that scientists have
preferences that generally exceed the influence of the context. As shown in Figure 3a, we find
that scientists do have preferences that they tend to maintain across contexts, although there is
some evidence that they occasionally adapt to the target research area. While we interpret such
deviations from an author’s preference as adaptation to the subject matter, they could indicate
adaptation to the audience of the paper, in pursuit of social consistency (code-switching). Using
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Figure 3: Importance of sequential and contextual consistency in scientists’ behavior.

a Beta-Binomial model9, we confirm that authors tend to generally stick to the same metric in
their works and that the prevalence of each preference varies across research areas (Figure 3b).

6In case a paper belongs to multiple categories, we average bc over all these categories.
7This model is equivalently an item-response model [34], a popular approach in psychology and cognitive

science as they allow to infer latent traits responsible for individuals’ responses to a collection of tests.
8We assume that:

θi =

{
+µ with probability pCi

−µ with probability 1− pCi

where Ci is the primary research area of author i and µ ∼ Exponential(1). The ability of this item-response
model to reconstruct the latent parameters µ and b is tested with simulated data assuming no effect of sequential
consistency, i.e. θi = 0 for every author (Appendix A.2, Figure 8).

9Let Ni be the amount of solo-authored papers by an author i with an explicit choice of metric signature,
and ki the amount of those that uses the mostly plus (+1) convention. We assume that ki ∼ Binomial (Ni, pi),
with pi ∼ Beta (αCi , βCi) and αc, βc ∼ Exponential(1).
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3 Local versus global coordination: an Ising model approach

If scientists’ attitude towards the sign convention was dictated by the need to coordinate with
their collaborators, then, their preferences should be aligned with those of their social environ-
ment. While there exists no universal norm at the level of the entire field, it could still be the case
that scientists are at least behaving in a way consistent with their own collaborators. To estab-
lish whether this is the case, we begin by constructing a co-authorship graph (Figure 4), where
each node i on the graph (each author) is assigned an attribute σi ∈ {±1} that encodes their
favorite convention (as measured from their solo-authored publications), and edges are given
weights wij that represent the strength of the relationship between co-authors i and j10. We
may then measure the average alignment between co-authors, ⟨σiσj⟩ =

∑
i,j wijσiσj/

∑
i,j wij ,

a quantity comprised between -1 (perfect anti-alignment) and +1 (perfect alignment). We
find ⟨σiσj⟩ = +0.32, which is significantly more than would be expected by chance alone
(P < 10−4)11: despite the absence of universal norm, scientists’ preferences are positively
correlated with those of their collaborators.

How did such partial alignment emerge? Coordination among physicists may be achieved
either locally (via short-range interactions among scientists), or globally, via shared culture.
To delineate these two possibilities, we model physicists’ preferences with an Ising model, with
parameters J and B, such that the probability P (σ1, . . . , σn|J,B) of observing a particular
configuration σ1, . . . , σn is:

P (σ1, . . . , σn|J,B) =
1

Z(J,B)
e−U(σ1,...,σn,J,B), with U = −

∑
i,j

Jwijσiσj︸ ︷︷ ︸
local

coordination

−
∑
i

BCiσi︸ ︷︷ ︸
global

coordination

(4)

Where Ci is the primary research area of i. J captures the effect of local coordination via
pairwise interactions on the graph. B = (Bc) captures the global effect of each research area:
their effect is global in that they equally affect all individuals within a group regardless of their
position in the network. Using the cultural landscape analogy previously evoked, B can be
interpreted as the “mean-field” effect of other cultural traits associated with the preference for
a convention over the other, given their distribution in a particular research area. Consequently,
each author experiences two influences: that of their social environment (via J), and that of
their broader research area (via B). In the Ising model, U is the potential of a particular
configuration, as defined by the values of σi for every i. The Ising model follows naturally from
eq. (2), §1.2 in coordination games. The B term introduces an asymmetry between authors
from different research areas12.

If J > 0, the potential U is lower in configurations in which each nodes share the orientation
(±1) of their neighbors. Such systems may undergo phase transitions towards configurations
in which individual nodes spontaneously align over large distances. Although originated from
spin physics, the Ising model provides a concise description of how local interactions at the
microscopic scale can give rise to polarization at a macroscopic scale. It has found wide-ranging
applications in the social science [36], notably for the study of belief propagation [37].

In our case, the configuration (σ1, . . . , σn) is observed, and we would like to infer the pa-
rameters of the Ising model given the data; that is, we want to extract P (J,B|σ1, . . . , σn).

10We use wij =
∑

d|{i,j}⊂Ad

1
|Ad|−1

, where Ad is the set of co-authors of publication d, following [35].
11We compare the observed value of ⟨σiσj⟩ to what would be expected if authors chose one or the other

convention at random, with probabilities equal to the frequency of each convention. This null model predicts
E[⟨σiσj⟩] = 0.10, far below the observed value.

12Unlike the games in Table 1, we assume that the effect of the asymmetry between research areas does not
scale linearly with each node’s degree centrality (ki =

∑
j wij). Instead, each strategy is associated with a

constant payoff ri = BCiσi regardless of the interactions involving i [20]
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However, this probability distribution is computationally intractable. Therefore, we use the
pseudo-likelihood method [38] to infer J and B, given that it is both accurate, efficient, and ro-
bust to missing data as we show in Appendix A.3. The results are shown in Table 2. The inverse
Ising approach reveals that research areas have large global effects, and that local coordination
has a small but statistically significant effect.

In fact, this convention may propagate locally via channels others than collaborations, in-
cluding publications (Figure 5). We account for this possibility by introducing an additional
local contribution Jcit

∑
j w

cit
ij σj in the approximate pseudo-likelihood (5), induced by the au-

thors’ co-citation graph Gcit. The co-citation graph is a directed graph that captures “who
cites who” (interestingly, the pseudo-likelihood approach can directly accommodate asymmet-
ric interactions in directed networks). Formally speaking, the weights wcit

ij of the edges of

Gcit measure the frequency of citations of j by i, given wcit
ij =

∑
d,d′|i∈Ad,j∈Ad′ ,i ̸=j

cdd′
|Ad||Ad′ |

with

cdd′ = 1 if d cites d′ and 0 otherwise. After adding this contribution to (5), we find that both
J and Jcit are significantly positive; that is, both co-authors and publications seem to carry an
influence13.

Table 2: Parameters of the Ising model.

Effect size CI95% Effect size CI95%
Parameter

J +0.013 [+0.009, +0.017] +0.0095 [+0.0052, +0.014]
Jcit - - +0.00049 [+0.00023, +0.00075]
B(hep − ph) -0.86 [-0.99, -0.73] -0.77 [-0.91, -0.64]
B(hep − th) -0.22 [-0.29, -0.15] -0.17 [-0.24, -0.095]
B(gr − qc) +0.075 [-0.0069, +0.16] +0.076 [-0.0066, +0.16]
B(astro) -0.6 [-0.74, -0.47] -0.59 [-0.73, -0.46]

To assess which of local or global coordination dominate, we evaluate the fraction of authors
for which local contributions in (5) exceed the global effect of B. We find that local effects
exceed and reverse global effects for 7% of the sample of 2 277 authors (CI95% = [3%–15%]). In
addition, we find that the inclusion of local effects only marginally improves the model’s predic-
tive accuracy, from an average of 67.7% (only considering global effects) to 70.2%. Therefore,
local processes play a smaller role.

It must be stressed, however, that our measurements of J and B may be confounded by
hidden structures. For instance, while we assumed B to be uniform within each of the four
research areas considered, it may vary from across subtopics within each research areas. If their
effect is omitted, this might inflate the estimate of J . Conversely, the effect of each research
area may reflect unmodelled social structures. Therefore, the Ising model is an effective param-
eterization, such that the measured values of J and B may vary depending on the networks
and scales under consideration. Fortunately, this approach is highly flexible. For instance, it
can incorporate any combination of networks, and simultaneously infer which of these networks
is more able to account for the patterns of coordination (Figure 5).

4 Inferring mechanisms of preference formation

The Ising model is certainly not a realistic description of how individual preferences come to be.
Yet, as we show below, idealized models from statistical physics nevertheless provide clues about
the actual process. Below, we assess the relative plausibility of three hypothetical mechanisms

13That J remains positive after accounting for co-citations suggests that correlations between co-authors’
preferences may not be explained solely by correlations in their research.
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Figure 4: Metric signature preferences in the co-author network. Each node is an
author. Edges represent co-authorship relationships between authors. Nodes’ colors indicate
authors’ preferences (pink for −1, green for +1). Only the largest connected component is
shown.
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Figure 5: Illustration of local coordination in multilayered social networks. Nodes
can be connected through different kinds of relationships (for instance, authors can be related
via collaborations (G) or citations (Gcit)). In this diagram, patterns of coordination are better
explained by the directed graph at the top (Gcit): (1,2) have imitated (4), and (3) has imitated
(5).

according to their ability account for the observed values of J and B. Although none of these
may be compelling accounts of reality, they will primarily serve to illustrate how to achieve some
understanding of the underlying mechanism of preference-formation given the balance between
local and global coordination.

The first proposed mechanism (M1) is an agent-based model in which scientists operate
a trade-off between social consistency (driven by coordination costs), sequential consistency
(driven by switching costs), and contextual consistency (driven by maladaptation costs, i.e.
incompatibility with their research area). In this model, the network is initialized in a random
state; then, at every step of the simulation, scientists follow a best response strategy, by evalu-
ating whether they would be better off changing their preference or not, given the magnitude of
each of these costs, their probability of publishing in each research area, and their collaborators’
preferences14 (in that scenario, coordination is channeled by co-authorship and not co-citations).
The second mechanism considered (M2) is a global process of cultural transmission whereby
scientists adopt a convention at the start of their career with a probability that depends on their
primary research area, and on the time at which their career started. Such process is meant
to capture the transmission of conventions via cultural artefacts such as textbooks (Appendix
A.5). Finally, the third mechanism considered (M3) is a process of local cultural transmission,
in which scientists copy the preference of their first co-author15.

Many samples are drawn according to each generative process M1,M2,M3. For each sample,
we infer the parameters of the Ising model (B, J and Jcit) – ignoring the authors whose actual
preference is unknown, in order to preserve the compatibility with the values of B, J and Jcit

inferred from the actual data). Since each model generates slightly different patterns for these
parameters (Figure 6), these can be used as summary statistics for estimating their relative
plausibility given the observed data, P (M |J, Jcit,B). For this task, we use simulation-based
inference [39] with BayesFlow [40, 41]. This procedure allows to perform Bayesian inference
when one lacks an analytical expression for the likelihood P (D|M), and all that can be done
is drawing samples by simulating the generative process M . This technique is especially useful

14See Appendix A.4 for a more precise description.
15The preference of scientists with no “parent” in the graph is drawn according to the same global process

as in the global cultural transmission model (M2), such that the process M3 includes both local and global
mechanisms. In total, in this model, 10% of authors form a preference by imitation.
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for making inferences about models defined by complex programs, such as agent-based models.
When the data is highly dimensional (as in the present case), this approach requires “summary
statistics” [39]. Interestingly, the parameters of the Ising model can serve this role. Figure 11
confirms that the procedure exhibits some ability to discriminate the three models.

The result of this procedure is shown in Figure 6. This confirms that each model predicts
different patterns for J and B. In particular, since it explicitly implements coordination costs
(which are themselves driven by local interactions), the strategic agent model can predict large
values of J . The model of cultural transmission via imitation predicts slightly higher values
of J than global cultural transmission, but generally smaller values of B. Because of these
distinctive patterns, we can compare each model’s ability to account for the data. As shown in
Figure 6, the results seem to rule out purely global cultural transmission which fails to explain
the magnitude of local coordination. There is slightly more evidence of partial local cultural
transmission model.
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P (M |J, Jcit,B)
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1Figure 6: Left plot: marginal posterior distribution of summary statistics for each model
(shown in colors), compared to the summary statistics derived from the data (indicated by
black bars). Gray bars represent the 95% posterior credible interval of each parameter given
the data. Right plot: posterior probability of each model given the observed parameters of
the Ising model.

5 Inferring mechanisms of conflict resolution

Coordination failures give rise to conflicts. Given that physicists’ preferences are not perfectly
aligned to those of their collaborators, they must occasionally resolve disagreements about which
metric signature to use as they co-author a paper. We stressed that the resolution of conflicts in
such scenarios implied a trade-off between optimality and decision costs: while some decisions
may be superior to others, the cost of arguing and properly aggregating each author’s input
may exceed the benefits.

Below, we consider multiple preference aggregation strategies and estimate their prevalence
given data about the metric signature selected in co-authored papers. As we will show, this
provides indirect information about how authors navigate this trade-off in the case of the metric
signature. We leverage papers with an identified metric signature S ∈ {±1} for which all
authors’ preferences (σi, . . . , σn) ∈ {±1}n were measured independently from single-authored
papers. For many of these papers (182 papers with two authors, 28 papers with three authors,
and 4 papers with four authors), authors have conflicting preferences. Since different processes
of preference-aggregation occasionally predict different outcomes given (σi, . . . , σn) ∈ {±1}n,
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we may infer their relative likelihood from the data.
First, we consider “dictatorial” strategies, whereby a specific author (the first author, the

last author, or any other one) imposes their favorite convention (which, again, is independently
measured from their solo-authored publications). Dictatorial strategies dismiss all information
about other authors or the research context, such that the resulting decision is potentially
suboptimal. We also consider a “majoritarian” process, whereby the majority preference is
selected, thus maximizing collective satisfaction. These two strategies (dictatorial and majori-
tarian) are probably the most classic examples in social choice theory and in the preference
and judgment aggregation literature [42, 43]. It is also tempting to consider the achievement of
consensus through deliberation, another popular example. However, it seems difficult to infer
whether a decision was reached from deliberation based solely on the observed outcome and
each individual’s initial preference. Instead, we consider a “random” process, equivalent to a
coin-flip (in fact, in the two-author case, a coin-flip is presumably equivalent to deliberation, if
both authors are equally influential in the deliberation). Finally, we include a “conventional”
process, whereby the signature most frequent in a given context is retained, irrespective of the
authors’ preferences.

We then estimate the prevalence prevalence πk of each preference aggregation strategy Ak ∈
{A1, . . . }, given that P (S|σ1, . . . , σn) =

∑
k P (S|σ1, . . . , σn, Ak)P (Ak), and Ak ∼ Categorical(πk).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

First-author chooses
(dictatorial)

Last-author chooses
(dictatorial)

Other author chooses
(dictatorial)

Majoritarian

Conventional

Random

2 authors

3+ authors

1Figure 7: Prevalence of aggregation strategies. Error bars indicate 95% credible intervals. The
dominant strategy seems to be that the last author dictates the metric convention.

Results are shown in Figure 7, given a flat Dirichlet prior on πk. Due to the sample size, error
bars are quite wide. Nevertheless, we can see that dictatorial strategies prevail (πdictatorial > 0.73
at the 95% credible level for the two-author case and πdictatorial > 0.57 for the three+-author case
– which is almost always three authors), even in the 3+ authors case (for which majority vote
is possible): inequalities in authors’ statuses within collaborations can facilitate judgment and
preference aggregation. More interestingly, in the two-author configuration, there is conclusive
evidence that it is less probable for the first author to choose the metric signature compared to
the last author (P (πfirst-author > πlast-author) = 0.008). For 3+ authors, the data leans towards
this direction as well (P (πfirst-author > πlast-author) = 0.222); moreover, middle-authors seem less
likely to dictate the final choice. The last author (who is generally in a leadership position)
therefore seems to enjoy more influence over the choice of metric signature generally, even
though the first author carries a greater share of work (in principle) and would benefit from
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using their favorite metric signature16. This emphasizes the role of leadership in the resolution
of conflicts, and suggests that for this particular convention, “optimality” (whether in the sense
of promoting collective agreement, or the first author’s satisfaction) is sacrificed. Since the
last author’s preference effectively prevails more often, we may conclude that highly influential
authors are protected from coordination costs and that conventions in co-authored papers are
not representative of their authors’ average preference.

6 Discussion

This paper identified and explored three dilemmas potentially disrupting the diffusion of con-
ventions using a mixed theoretical and empirical approach of a sign convention in physics. This
revealed that in real-life settings, the attitude of individuals towards conventions involves het-
erogeneous processes that may compete with each other and ultimately prevent the emergence
of a norm.

The first dilemma examined in this paper is the balance between social, sequential, and
contextual consistency driven respectively by coordination, switching, and maladaptation costs.
In the general case, all of them may be involved and compete with each other. Conventions
can thus involve more than the need to achieve coordination with others in contrast to David
Lewis’ account of conventions. For instance, in the case of the metric signature, we found
that sequential consistency matters significantly, although physicists occasionally adapt to the
topic of their research, reflecting the role of context. To investigate this trade-off, a formal and
broadly applicable utilitarian description of decision-making processes involved in conventions
was proposed. Building upon statistical physics, this utilitarian account was translated into
probabilities, thus enabling the retrieval of information about the underlying processes from
behavioral data.

In particular, for conventions ruled by coordination problems which failed to develop into
universal norms, our approach can recover the underlying game (the payoff matrix) and the
network structures involved. First, we confirmed that scientists’ preferences tend to be aligned
to those of their collaborators, although imperfectly. We then explored whether such alignment
emerged from local coordination driven by dyadic interactions on a network, or from global
coordination involving shared culture and knowledge or institutions transcending the social
network. Interestingly, these two processes can be encoded in the structure of the underlying
coordination game (Table 1). Using an Ising model, we measured their relative contribution
and found significant evidence for both, although local coordination plays a smaller role. We
also found that local coordination was carried by both the co-authorship and the co-citation
networks. Additionally, we showed that different mechanisms of preference-formation predict
different patterns for the Ising model parameters. Therefore, these parameters may be used
as summary statistics to determine the relative plausibility of multiple models of preference
formation. We found slightly more evidence in favor of cultural transmission of preferences via
the imitation of a peer, a process that can explain a small but non-vanishing magnitude of
local coordination. Purely global cultural transmission (as one might expect from the imitation
of textbooks) is ruled out due to its inability to account for the observed magnitude of local
coordination. However, our work did not exhaust all possible mechanisms, which was not
our aim. This would require more realistic models and additional summary statistics beyond
the parameters of the Ising model. For instance, different processes of preference-formation
might predict different levels of intra- and inter-generational coordination, and this could be
leveraged in their comparison. Nevertheless, the local versus global distinction is generally
insightful. In scientific communities, it may explain which aspects of epistemic cultures belong

16Authorship norms are known to vary across fields [44]. To verify that these interpretation hold in fundamental
physics, we evaluated the probabilities that the first-author or the last-author are strictly older than the other
co-authors. We found an association between last-authorship and seniority (see Appendix A.7 for more details).
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to a “disciplinary matrix” [29] (the set of practices and values that scientists adopt as part of
the process of acquiring and conforming to a disciplinary identity) and which aspects emerge
more spontaneously and locally. More generally, we show how the Ising approach provides a
relatively model-independent way of discriminating local (i.e. emergent and endogenous) from
global (exogenous) collective synchronization using behavioral network data.

Finally, given that scientists’ preferences are imperfectly aligned to those of their collabora-
tors, they must occasionally resolve conflicts about which convention to use in a collaboration.
We therefore explored a trade-off in conflict-resolution between the optimality of the outcome
(e.g., the degree of collective satisfaction) and decision costs (i.e. the cost of reaching a deci-
sion). We inferred the prevalence of various preference-aggregation strategies in co-authored
papers, and found more evidence for “dictatorial” strategies. Specifically, we found that the
last-author’s preference has a higher chance of prevailing, leading to suboptimal outcomes.
Therefore, leadership and seniority play a role in addressing coordination problems in the ab-
sence of norm.

By considering these three trade-offs simultaneously, we have revealed multiple interactions
among themselves. For instance, whether individuals value sequential or contextual consistency
has implications for the propagation of conventions and the ability to achieve consensus. Simi-
larly, the importance of context shapes the structure of the underlying coordination game and
the balance between local and global contributions in the formation of individuals’ preferences.
Finally, the role of seniority in the resolution of conflicts suggests that highly connected indi-
viduals can shield themselves from coordination costs, which may impact on the propagation
of conventions.

Our work provides an array of tools for understanding either the lack of norm or the persis-
tence of inferior norms and practices in a wide range of contexts. To this end, our methodology
can be generalized in several ways. For instance, while the Ising model presupposes that the un-
derlying coordination game has a dyadic interaction structure, scientists frequently interact in
collaborations involving more than three authors. Therefore, we may also consider higher-order
interactions [20] (encoded by hypergraphs rather than graphs) on a generalized Ising model [45].
Moreover, although this paper this paper limits itself to a binary convention, the approach can
be applied to conventions involving more than two alternatives. Additionally, to our knowledge,
this paper is the first attempt to reverse-engineer the processes of judgment-aggregation in co-
authored publications [46], and our approach may be applied to many other decisions. Finally,
this paper has not paid much attention to temporal dynamics, due to the temporal sparsity
of the data. Nevertheless, exploring such dynamics would provide more information about the
underlying processes of transmission, or about how sequential consistency plays out over time.
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A Supplementary Information

A.1 Regular expressions for determining the metric signature

The following case-insensitive regular expressions have been used to detect occurences of the mostly
minus signature:

• (([,\s\{\}]*)(\+|1)([,\s\{\}1]*)){1}(([,\s\{\}]*)\-([,\s\{\}1]*)){3,}
• (mostly[-\s]*minus|west[-\s]*coast)
• g \{(00|tt)\}[\s]*=[\s]*[+]?[\s]*1
• \\Box(\^(\{2\}|2))?[\s]*\+[\s]*m\^(\{2\}|2)

Symmetric expressions are conversely employed for detecting instances of the mostly plus metric
signature.

A.2 Sequential versus contextual consistency: model assessment
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1Figure 8: The analysis in 2 is re-iterated with simulated data instead of actual data. The
simulation assumes that θi = 0 for all authors (i.e. there is no effect of consistency), while each
research area has a significant effect. The inference correctly finds that |θ| is nearly zero and
correctly identifies the ground truth size of the effect of each research area (+2, -2, +1, and -1
respectively).

A.3 Inverse ising problem and the pseudo-likelihood approach

The pseudo-likelihood method [38] transforms the inverse Ising problem into a tractable logistic regres-
sion, based on the likelihood of observing each individual spin conditional on the others, i.e.:

∏
i

P (σi = +1|{σj ̸=i}) =
∏
i

e+J
∑

j wijσj+BCi

e+J
∑

j wijσj+BCi + e−J
∑

j wijσj−BCi

(5)

Using simulated configurations of G, we demonstrate that the pseudo-likelihood approach provides
reliable estimates of J and B, if all σj are observed, and for J ≤ 10−2 (Figure 9). In the case that a value
σj is unknown, due to a lack of paper solo-authored by j with an identified metric signature, then author
j is omitted from the sums in (5). This is equivalent to imputing σj = 017. We find that this approach

17This imputation strategy is also equivalent to restricting the inference procedure to a sub-graph of the
co-authorship graph, including only the nodes and edges involving the 2 277 authors whose preference could be
identified in at least one solo-authored paper.
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is able to recover reliable information about the true value of J (Appendix A.3, Figure 9). However, we
may fear that the imputation of missing data (equivalently interpretable as the removal of unobserved
nodes from the network) introduces bias in our inference [25]. A proper handling of unknown authors’
preferences would require marginalizing eq. (5) over the 2m possible combinations of the m underlying
unobserved signatures18. Unfortunately, the amount of missing data makes this impossible. However,
this issue is not necessarily critical if, ultimately, we are less interested in recovering the exact values
of J and B than in using the estimates as summary statistics for the purpose of comparing multiple
models of the formation of individual preferences. Then, as long as each model predicts distinct patterns
for the best-fit values of J and B, the procedure remains useful. In any case, simulations show that
the measured value of J is very correlated with the true value, even when nodes with missing data are
masked during the inference process (cf. Appendix A.3, Figure 9). Finally, missing data could be a
feature rather than a bug; they might manifest the fact that certain authors make no explicit use of a
specific metric signature, in which case it is reasonable to assume that they may not exert any influence
over their co-authors’ preferences.
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Figure 9: Robustness of the pseudo-likelihood approach for measuring J and B. “True” values
of J and B are drawn at random [J ∼ Exponential(1/J∗), B ∼ N (0, 1)]. Node configurations
(σi) are drawn at random according to the Ising model for each values of J and B, using Gibbs
sampling, either i) removing or ii) including nodes corresponding to authors whose preference
is not observed in the data. Finally, the maximum likelihood estimates (MLE) JMLE and
BMLE are recovered with the pseudo-likelihood approach, for each configuration (σi), imputing
σi = 0 for authors whose preference was not observed in our data. The best-fit values are in
reasonably good agreement with the true values over the simulated range, although they are
much less accurate in the case where unobserved authors are included in the Gibbs sampling
process.

A.4 Strategic agent model

The “strategic agent” model proceeds as follow:

1. The parameters of the model are drawn at random:

18An alternative would be Gibbs sampling, which may handle missing data without marginalization, though
it turned out to perform worse than HMC in the present case.
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• cb ∼ N (0, 1), defined for each research area b, is the (dis)advantage of the +1 convention in
b. The cost of using a convention σ in context b is max(0,−σcb).

• cc ∼ Exponential(⟨di⟩) represent the magnitude of coordination costs, where ⟨di⟩ is the
average degree-centrality of authors in the co-authorship graph. The mean is thus set such
that ⟨cc⟩⟨di⟩ = 1.

• The cost of switching from one convention to another is fixed (cs = 1)19.

2. At t = 0, the network is initialized in a random state: σi,t=0 is set to either −1 or +1 with equal
probabilities.

3. At t+1, each agent compares their payoff in two scenarios: i) they switch their preference (σi,t+1 =
−σi) or ii) they maintain it (σi,t+1 = σi). The difference in payoffs is:

∆ = −cs−cc
∑
j

wij (max(0, σj,tσi,t) − max(0,−σj,tσi,t))−
∑
b

pib (max(0, σi,tcb) − max(0,−σi,t+1cb))

(6)

Where pib is the probability that i publishes in research area b. If ∆ > 0, i switches their preference.
The cost of switching (cs) introduces an asymmetry in ∆ and has the effect of a conservative bias.

4. The process is repeated 50 times. The amount of steps reflects a compromise between performance
and convergence.

This best-response strategy model is similar to common logit-response approaches to belief dynamics
such as [47], in the limit β → +∞ (see eq. 1.6).

A.5 Global transmission model

For the global transmission model, we assumed that the probability of adopting a specific convention
depends on both time and the author’s primary research area. The time-dependence was captured by
a random walk. The rate of change in the random walk was obtained by fitting the model to data on
reference books for which approximate patterns of citations throughout time could be measured. We
manually determined the metric convention used in each of these references. These gave us a measure of
the prevalence of each convention in the citations of reference textbooks’ throughout time. Unfortunately,
this measure itself was too imperfect to reflect the actual probability that a scientist adopts a convention
from a specific textbooks. Nevertheless, we used the rate of variation of this measure with time in our
random walk model.

A.6 Distribution of summary statistics across models

Conditioning the outcome of simulations on high-dimensional data D to evaluate P (·|D) is difficult
because the probability of generating exactly D becomes virtually zero. One should therefore condition
on summary statistics T living in a lower dimensional space. Ideally, the mapping f : D 7→ T should be
chosen in a way that maximizes our ability to tell apart the hypotheses that we seek to discriminate. In
our case, f : (σ1, . . . , σn) 7→ J,B may not be optimal in that specific sense, but it has some discriminating
power (see Figure 11) and has the merit of interpretability. A trivially better summary statistic for
assessing the plausibility of, say, the model of local cultural transmission would be, for instance, the
average rate of agreement between each author’s and their first co-author (whose preference they should
have imitated, according to the model).

19This breaks a degeneracy of the model due to scale-invariance (if all costs were rescaled by a certain quantity,
agents’ behavior would remain identical).
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1Figure 10: Bottom-left pair plot: distribution of summary statistics for each model (shown
in colors), compared to the summary statistics derived from the data (shown as black stars).
Plots on the diagonal show the marginal posterior distribution of each summary statistics for
each model (gray bars represent the 95% posterior credible interval of each parameter given the
data). Top-right bar plot: posterior probability of each model given the observed parameters
of the Ising model.
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1Figure 11: Reliability of the simulation-based model comparison approach. The confusion
matrix represents the probability that a sample drawn from the horizontal model is attributed
to the vertical model.

A.7 Authorship norms

We investigated authorship norms in fundamental physics (excluding experimental physics, which are
not considered in this paper and have very unusual norms). We found that the author-list of 79% of
two-author papers are alphabetically ordered. Given that for n authors, there is a 1/(n!) chance that
any ordering is equal to the alphabetical order, this implies that 56% of two-author papers author-lists
are intentionally ordered [44]. This number goes down to 45% for four-author publications. Therefore,
despite a high prevalence of alphabetical ordering in fundamental physics compared to other disciplines
(as found by [44]), in about half of the publications the ordering of authors is meaningful.

Most importantly, we found evidence that last-authorship is associated with seniority: in 54% of two-
author papers, the last author has an academic age strictly higher than the first author; in comparison,
in only 40% of cases, the first-author has strictly higher seniority compared to the last-author. In the
three-author case, the last author has the strictly highest seniority in 29% of cases, versus 17% for the
first-author.
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